Previous |  Up |  Next

Article

References:
[1] A. BRESSAN: On differential relations with lower continuous right hand side. An existence theorem. J. Diff. Equations 37 (1980), 89-97. MR 0583341 | Zbl 0418.34017
[2] C. CASTAING: Rafle par un convexe aleatoire à variation continue à droite. Séminaire d'Analyse Convexe, Montpellier 1975, expose no 15. MR 0512203 | Zbl 0353.46032
[3] C. CASTAING M. VALADIER: Convex Analysis and Measurable Multifunctions. Lecture Notes in Math., Vol. 580, Springer, Berlin (1977). MR 0467310
[4] K. DEIMLING: Sample solutions of stochastic ordinary differential equations. Stoch. Anal. Appl. 3 (1985), 15-21. MR 0783042 | Zbl 0555.60036
[5] N. DUNFORD J. SCHWARTZ: Linear Operators. Vol. I, Wiley, New York (1958).
[6] C. HIMMELBERG F. Van LECK: Lipschitzian generalized differential equations. Rend. Sem. Mat. Univ. Padova 48 (1972), 156-169. MR 0340692
[7] S. ITOH: Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67 (1979), 261-173. MR 0528687 | Zbl 0407.60069
[8] G. LADDE V. LAKSHMIKANTHAM: Random Differential Inequalities. Academic Press, New York (1980). MR 0618464
[9] S. LOJASIEWICZ: The existence of solutions for lower semicontinuous orientor fields. Bull. Polish Acad. Sci. 28 (1980), 483-487. MR 0629022 | Zbl 0483.49028
[10] A. NOWAK: Applications of random fixed point theorems in the theory of generalized random differential equations. Bull. Polish Acad. Sci. 34 (1986), 487-494. MR 0874895 | Zbl 0617.60059
[11] N. S. PAPAGEORGIOU: Random differential inclusions in Banach spaces. J. Diff. Equations 65 (1986), 287-303. MR 0865064 | Zbl 0615.34006
[12] N. S. PAPAGEORGIOU: On measurable multifunctions with applications to random generalized equations. Math. Japonica 32 (1987), 701-727. MR 0914749
[13] N. S. PAPAGEORGIOU: On the existence of solutions of random functional-differential equations in Banach spaces. J. Math. Anal. Appl. (to appear).
[14] N. S. PAPAGEORGIOU: Functional-differential inclusions in Banach spaces with nonconvex right hand side. Funkcialaj Ekvacioj (to appear). MR 1006092 | Zbl 0698.34067
[15] PHAN VAN CU0NG: Existence of solutions for random multivalued Volterra integral equations. J. Integral Equations 7 (1984), 143-173. MR 0756552
[16] M.-F. SAINT-BEUVE: On the extensions of von Neumann-Aumann's theorem. J. Funct. Anal. 17 (1974), 112-129.
Partner of
EuDML logo