Previous |  Up |  Next

Article

References:
[1] BLASIO di G., KUNISH K., SINASTRARI E.: Stability for abstract linear functional differential equations. preprint, Universität Graz, 1984.
[2] BROWDER F. E.: On the spectral theory of elliptic differential operators I. Math. Ann. 142 (1961), 22-130. MR 0209909 | Zbl 0104.07502
[3] COLEMAN B. D., MIZEL V. J.: Norms and semigroups in the theory of fading memory. Arch. Rat. Mech. Anal. 23 (1966), 87-123. MR 0210343
[4] FITZGIBBON W. E.: Nonlinear Volterra equations with infinite delay. Monatsh. Math. 84 (1972), 275-288. MR 0481982
[5] FRIEDMAN A.: Partial Differential Equations. Holt, Rinehart and Winston, New York, 1969. MR 0445088 | Zbl 0224.35002
[6] HALE J.: Theory of Functional Differential Equations. Appl. Math. Sciences, Vol. 3, Springer - Verlag, 1977. MR 0508721 | Zbl 0352.34001
[7] HALE J. K., KATO J.: Phase space tor retarded equations with infinite delay. Funkcial. Ekvac. 21 (1978),11-41. MR 0492721
[8] HENRY D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. No 840, Springer-Verlag, 1981. MR 0610244 | Zbl 0456.35001
[9] HILLE E., PHILLIPS R. S.: Functional Analysis and Semigroups. Amer. Math. Soc. Providence, 1957. MR 0089373 | Zbl 0078.10004
[10] KAPPEL F., SCHAPPACHER W.: Some considerations to the fundamental theory of infinite delay equations. J. Diff. Eqs. 37 (1980), 141-183. MR 0587220 | Zbl 0466.34036
[11] KATO T.: Perturbation Theory for Linear Operators. Springer-Verlag, 1966. MR 0203473 | Zbl 0148.12601
[12] KUNISH K., SCHAPPACHER W.: Necessary conditions for partial differential equations with delay to generate $C_0$ - semigroup. J. Diff. Eqs. 50 (1983), 49-79. MR 0717868
[13] NAITO T.: On linear autonomous retarded equations with an abstract phase space for infinite delay. J. Diff. Eqs. 33 (1979), 74-91. MR 0540818 | Zbl 0384.34042
[14] NUSSBAUM R.: The radius of the essential spectrum. Duke Math. J. 37 (1970), 473-478. MR 0264434 | Zbl 0216.41602
[15] SCHUMACHER K.: On the resolvent of linear nonautonomous partial functional differential equations. preprint No 247, Universität Heidelberg, 1984. MR 0807853
[16] SMULYAN Yu. L.: Compact perturbation of operators. (in Russian), Doklady Akad. Nauk SSSR 101 (1955), 35-38.
Partner of
EuDML logo