Previous |  Up |  Next

Article

References:
[1] N. A. Assad W. A. Kirk: Fixed point theorems for set-valued mappings of contractive type. Pacific J. of Math. 43 (1972), 553-562. MR 0341459
[2] F. E. Browder: Normal solarability and $\phi $-accretive mappings of Banach spaces. Bull. Amer. Math. Soc, 78 (1972), 186-192. MR 0306992
[3] F. E. Browder: Nonlinear mappings of nonexpansive and accretive type in Banach space. Bull. Amer. Math. Soc. 73 (1967), 875-881. MR 0232255
[4] F. E. Brovder: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Symp. Pure Math. vol. 18, pt. 2, Amer. Math. Soc, Providence, RI, 1976. MR 0405188
[5] M. Crandall A. Pazy: On the range of accretive operators. Israel J. Math. 27 (1977), 235-246. MR 0442763
[6] K. Deimling: Zeros of accretive operators. Manuscripts Math, 13 (1974), 365-375. MR 0350538 | Zbl 0288.47047
[7] A. G. Kartsatos: Some mapping for accretive operators in Banach spaces. J. Math. Anal. Appl. 82 (1981), 169-183. MR 0626747
[8] T. Kato: Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 19 (1967), 508-520. MR 0226230 | Zbl 0163.38303
[9] W. A. Kirk: Local expansions and accretive mappings. accepted. Zbl 0534.47032
[10] W. A. Kirk R. Schöneberg: Some results on pseudo-contractive mappings. Pacific J. Math. 71 (1977), 89-100. MR 0487615
[11] W. A. Kirk R. Schöneberg: Zeros of $m$-accretive operators in Banach spaces. Israel J. Math. 35 (1980), 1-8. MR 0576458
[12] R. H. Martin: Differential equations on closed subsets of a Banach space. Trans. Amer. Math. Soc. 179 (1973), 399-414. MR 0318991 | Zbl 0293.34092
[13] C. Morales: Nonlinear equations involving $m$-accretive operators. J. Math. Anal. Appl. 97 (1983), 329-336. MR 0723235 | Zbl 0542.47042
[14] C. Morales: Zeros for strongly accretive set-valued mappings. submitted. Zbl 0634.47048
[15] William O. Ray, Anita M. Walker: Mapping theorems for Gateaux differentiable and accretive operators. Nonlinear Analysis, 6 (1982), 423-433. MR 0661709
[16] R. Schöneberg: On the domain invariance theorem for accretive mappings. J. London Math. Soc. 24 (1981), 548-554. MR 0635886
Partner of
EuDML logo