Previous |  Up |  Next

Article

References:
[1] D. Amir J. Lindenstrauss: The structure of weakly compact subsets in Banach spaces. Ann. of Math. 88, 1968, 35-46. MR 0228983
[2] M. G. Bell: Two boolean algebras with extreme cellular and compactness properties. Can. J. of Math., Vol. XXXV, No. 5, 1983, 824-838. MR 0735899 | Zbl 0519.06012
[3] M. G. Bell: Supercompactness of compactifications and hyperspaces. Trans. A.M.S., Vol. 281, No. 2, 1984, 717-724. MR 0722770 | Zbl 0523.54015
[4] M. G. Bell J. Ginsburg: Compact spaces and spaces of maximal complete subgraphs. Trans. A.M.S., Vol. 283, No. 1, 1984, 329-338. MR 0735426
[5] M. G. Bell J. van Mill: The compactness number of a compact topological space I. Fund. Math. CVI, 1980, 163-173. MR 0584490
[6] J. de Groot: Supercompactness and superextensions, in Contributions to extension theory of topological structure. Symp. Berlin 1967, Deutscher Verlag Wiss., Berlin 1969, 89-90. MR 0244955
[7] C. F. Mill J. van Mill: A nonsupercompact continuous image of a supercompact space. Houston J. Math. 5, 1979, 241-247. MR 0546758
[8] S. Mrowka: Mazur theorem and $m$-adic spaces. Bull. Acad. Polonaise Sci. XVIII No. 6, 1970, 299-305. MR 0264613 | Zbl 0194.54302
[9] M. Hušek: Special Classes of Compact Spaces. Lecture Notes in Math. 719 Springer Verlag 1979, 167-175. MR 0544642
Partner of
EuDML logo