Previous |  Up |  Next

Article

References:
[1] R. ANANTHARAMAN T. LEWIS J. H. M. WHITFIELD: Smoothability, strong smoothability and dentability in Banach spaces. to appear. MR 0611210
[2] D. CUDIA: The geometry of Banach spaces. Smoothness. Trans. Amer. Math. Soc. 110 (1964), 284-314. MR 0163143 | Zbl 0123.30701
[3] J. B. COLIER: A class of strong differentiability spaces. Proc. Amer. Math. Soc. 53 (1975), 420-422 MR 0388044
[4] M. M. DAY: Strict convexity and smoothness of normed spaces. Trans. Amer. Math. Soc. 78 (1955), 516-528. MR 0067351 | Zbl 0068.09101
[5] J. DIESTEL: Geometry of Banach spaces. Selected topics. Lecture Notes in Math. 485 (1975), Springer-Verlag. MR 0461094 | Zbl 0307.46009
[6] M. EDELSTEIN: Smoothability versus dentability. Comment. Math. Univ. Carolinae 14 (1973), 127-133. MR 0320708 | Zbl 0264.46013
[7] M. EDELSTEIN: Concerning dentability. Pacific J. Math. 46 (1973), 111-114. MR 0324378 | Zbl 0259.46018
[8] K. JOHN V. ZIZLER: A note on strong differentiability spaces. Comment. Math. Univ. Carolinae 17 (1976), 127-134. MR 0402469
[9] D. C. KEMP: A note on smoothability in Banach spaces. Math. Ann. 218 (1975), 211-217. MR 0399808 | Zbl 0302.46031
[10] J. KURZWEIL: On approximation in real Banach spaces. Studia Math. 14 (1954), 214-231. MR 0068732
[11] E. B. LEACH J. H. M. WHITFIELD: Differentiable functions and rough norms on Banach spaces. Proc. Amer. Math. Soc. 33 (1972), 120-126. MR 0293394
[12] T. LEWIS: On the duality between smoothability and dentability. Proc. Amer. Math. Soc. 63 (1977), 239-244. MR 0445275 | Zbl 0352.46008
[13] I. NAMIOKA R. R. PHELPS: Banach spaces which are Asplund spaces. Duke Mat. J. 42 (1975), 735-749. MR 0390721
[14] R. R. PHELPS: Dentability and extreme points in Banach spaces. J. Functional Analysis 16 (1974), 78-90. MR 0352941 | Zbl 0287.46026
[15] R. R. PHELPS: Differentiability of convex functions on Banach spaces. Lecture notes, London 1978.
[16] Ch. STEGALL: The duality between Asplund spaces and spaces with the Radon Nikodym property. Israel J. Math., to appear MR 0493268 | Zbl 0374.46015
[17] Ch. STEGALL: The Radon Nikodym property in conjugate Banach spaces. Trans. Amer. Math. Soc. 206 (1975), 213-223. MR 0374381 | Zbl 0318.46056
[18] Ch. STEGALL: The Radon Nikodym property in conjugate Banach spaces II. Trans. Amer. Math. Soc., to appear. MR 0603779 | Zbl 0475.46016
[19] F. SULLIVAN: Dentability, smoothability and stronger properties in Banach spaces. Indiana Univ. Math. J. 26 (1977), 545-553. MR 0438088 | Zbl 0376.46010
[20] F. SULLIVAN: On the duality between Asplund spaces and spaces with the Radon Nikodym property. to appear. MR 0482090 | Zbl 0384.46009
Partner of
EuDML logo