Previous |  Up |  Next

Article

References:
[1] M. A. AKCOGLU: A pointwise ergodic theorem in $L_p$ spaces. Canad. J. Math. (to appear). MR 0550405 | Zbl 1044.47500
[2] M. A. AKCOGLU R. V. CHACON: A local ratio theorem. Canad. J. Math. 22 (1970), 545-552, MR 0264031
[3] H. BUSEMANN W. FELLER: Zur Differentiation der Lebesgueschen Integrale. Fund. Math. 22 (1934), 226-256,
[4] N. DUNFORD J. T. SCHWARTZ: Linear Operators. part I, Interscience, New York, 1958.
[5] E. HILLE R. S. PHILLIPS: Functional Analysis and Semigroups. rev. ed., Amer. Math. Soc., Providence, RI, 1957. MR 0089373
[6] U. KRENGEL: A local ergodic theorem. Inventiones Math. 6 (1969), 329-333. MR 0241602 | Zbl 0165.37402
[7] Y. KUBOKAWA: A general local ergodic theorem. Proc. Japan Acad. 48 (1972), 361-465. MR 0328023 | Zbl 0254.47013
[8] Y. KUBOKAWA: A local ergodic theorem for semi-groups on $L_p$. Tohoku Math. J. 26 (1974), 411-422. MR 0352405
[9] Y. KUBOKAWA: Ergodic theorems for contraction semigroups. J. Math. Soc. Japan 27 (1975), 184-193. MR 0397444 | Zbl 0299.47007
[10] S. A. MOGRATH: A pointwise Abelian ergodic theorem for $L_p$ semigroups, $l\leq p < \infty$. to appear.
[11] D. S. ORNSTEIN: The sums of iterates of a positive operator. Advances in Probability and Related Topics, vol. 2 (edited by F. Ney), 87-115, Dekker, New York, 1970. MR 0286977 | Zbl 0321.28013
[12] T. R. TERRELL: Local ergodic theorems for $n$-parameter semigroups of operators. Contributions to Ergodic Theory and Probability, 262-278, Springer-Verlag, Berlin/Heidelberg/New York, 1970., MR 0268357 | Zbl 0204.45406
[13] K. YOSIDA: Functional Analysis. 1st ed., Springer-Verlag, 1965. Zbl 0126.11504
Partner of
EuDML logo