Previous |  Up |  Next

Article

References:
[1] D. AMIR J. LINDENSTRAUSS: The structure of weakly compact sets in Banach spaces. Ann. of Math. 88 (1968), 35-46. MR 0228983
[2] J. DIESTEL J. J. UHL: The Radon-Nikodym theorem for Banach space valued measures. to appear. MR 0399852
[3] K. JOHN V. ZIZLER: Smoothness and its equivalents in weakly compactly generated Banach spaces. Journ. Funct. Anal. 15 (1974), 1-11. MR 0417759
[4] J. LINDENSTRAUSS: Weakly compact sets, their topological properties and Banach spaces they generate. Ann. of Math. Stud. 69, Princeton Univ. Press (1972), 235-273. MR 0417761
[5] J. LINDENSTRAUSS: Decomposition of Banach spaces. Indiana Univ. Journ. 20 (1971), 817-819. MR 0405074 | Zbl 0235.46038
[6] D. PREISS P. SIMON: A weakly pseudocompact subspace of a Banach space is weakly compact. Comment. Math. Univ. Carolinae 15 (1974), 603-611. MR 0374875
[7] H. P. ROSENTHAL: The heredity problem for weakly compactly generated Banach spaces. Comp. Math. 28 (1974), 83-111. MR 0417762 | Zbl 0298.46013
[8] A. SOBCZYK: Projection of the space $(m)$ on its subspace $(c_0)$. Bull. Amer. Math. Soc. 47 (1941), 938-947. MR 0005777 | Zbl 0027.40801
[9] C. STEGALL: The Radon-Nikodym property in conjugate Banach spaces. to appear. MR 0374381 | Zbl 0475.46016
[10] S. TROJANSKI: On locally uniformly convex and differentiable norms in certain non-separable Banach spaces. Studia Math. 37 (1971), 173-180. MR 0306873
[11] W. A. VEECH: Short proof of Sobczyk theorem. Proc. Amer. Math. Soc. 28 (1971), 627-628. MR 0275122
Partner of
EuDML logo