Previous |  Up |  Next

Article

References:
[1] F. V. ATKINSON: On relatively regular operators. Acta Sci. Math. Szeged 15 (1953), 38-56. MR 0056835 | Zbl 0052.12502
[2] R. BOULDIN: The product of operators with closed range. Tohoku Math. J. 25 (1973), 359-363. MR 0326424 | Zbl 0269.47002
[3] R. BOULDIN: The pseudo-inverse of a product. SIAM J. Appl. Math. 24 (1973), 489-495. MR 0317088 | Zbl 0236.47007
[4] S. R. CARADUS: An equational approach to products of relatively regular operators. (submitted to Aequationes Math.). MR 0454696 | Zbl 0348.47010
[5] S. R. CARADUS: Operator theory of the pseudo-inverse. Queen's Papers in Pure and Applied Mathematics, No. 38, Quen's University, Kingston, Ont., 1974. Zbl 0286.47001
[6] C. W. GROETSCH: Representations of the generalized inverse. J. Math. Anal. Appl. 49 (1975), 154-157. MR 0361877 | Zbl 0295.47012
[7] J. J. KOLIHA: Convergent and stable operators and their generalization. J. Math. Anal. Appl. 43 (1973), 778-794. MR 0324447 | Zbl 0264.47016
[8] J. J. KOLIHA: Convergence of an operator series. Research Report No. 19, Department of Mathematics, University of Melbourne, 1974.
[9] M. Z. NASHED: Generalized inverses, normal solvability and iteration for singular operator equations. in Nonlinear Functional Analysis and Applications, L. B. Rall, Ed., Academic Press, New York, 1971, pp. 311-359. MR 0275246 | Zbl 0236.41015
[10] A. E. TAYLOR: Introduction to Functional Analysis. J. Wiley, New York, 1958. MR 0098966 | Zbl 0081.10202
Partner of
EuDML logo