Previous |  Up |  Next

Article

References:
[1] J. ALBRYCHT: On a theorem of Saks for abstract polynomials. Studia Math. XIV, 1 (1953), 79-81. MR 0062337 | Zbl 0052.11501
[2] A. ALEXIEWICZ, W. ORLICZ: Analytic operations in real Banach spaces. Studia Math. XIV, 1 (1953), 53-78. MR 0062947 | Zbl 0052.34601
[3] S. BANACH: Über homogene Polynome in $L_2$. Studia Math. VII (1938), 36-44. Zbl 0018.21902
[4] E. J. ECKERT: Positive eigenvectors of positive polynomial operators on Banach spaces. Michigan Math. J. 12 (1965), 487-491. MR 0185476 | Zbl 0151.20702
[5] M. FRÉCHET: Les polynomes abstraites. J. Math. pures appl. (9) 8 (1929), 71-92.
[6] M. FRÉCHET: Une definition fonctionnelle des polynomes. Nouv. Ann. Math. 9 (1929), 145-161.
[7] I. E. HIGBERG: Polynomials in abstract spaces. California Inst. Techn. Theses (1946).
[8] E. HILLE, R. S. PHILLIPS: Functional analysis and semi-groups. Providence 1957. MR 0089373
[9] R. I. KAČUROVSKIJ: On monotone operators and convex functionals. Uspehi Mat. Nauk 15, No 4 (1960), 213-215.
[10] J. KOLOMÝ: On the differentiability of mappings and convex functionals. Comment. Math. Univ. Caroline 8 (1967), 735-752. MR 0243348
[11] KOPEC', MUSIELAK: On the estimation of the norm of the n-linear symmetric operation. Studia Math. XV (1955), 29-30. MR 0073944 | Zbl 0065.35201
[12] L. A. LJUSTERNIK, V. I. SOBOLEV: Elements of functional analysis. Moscow 1965. MR 0209802
[1З] K. MAURIN: Metody przestrzeni Hilberta. Warszawa 1959. MR 0131148 | Zbl 0086.30901
[14] S. MAZUR, W. ORLICZ: Grundlege Eigenschaften der polynomischen Operationen. Studia Math. V (1935), 50-68; 179-189. MR 0068012
[15] M. M. VAJNBERG: Variational methods in the theory of non-linear operators. Moscow 1956.
[16] T. L. HAYDEN: The extension of bilinear functionals. Pacific J. Math. Vol. 22, No. 1 (1967), 99-108. MR 0227736 | Zbl 0177.40602
Partner of
EuDML logo