Previous |  Up |  Next

Article

References:
[1] L. Danzer B. Grünbaum V. Klee. : Helly's theorem and its relatives. Proceedings of Symposia in Pure Math., Vol. VII. Convexity.
[2] M. Davis M. Maschler. : Existence of stable payoff configurations foг cooperative games. Bull. Amer. Math. Soc. 69 (1963), 106-108. MR 0144791
[3] S. Eilenberg D. Montgomeгy. : Fixed point theorems for multi-valued transformations. Amer. J. Math. 68 (1946), 214-222. MR 0016676
[4] S. Kakutani. : A generalization of Brouwer's fixed point theorem. Duke Math. J. Vol. 8, (1941), 457-459. MR 0004776 | Zbl 0061.40304
[5] S. Karlin. : Mathematical methods and theory in games, programming and economics. London-Paris 1959.
[6] S. Lefschetz. : Algebraic topology. New York 1942. MR 0007093 | Zbl 0061.39302
[7] J. F. Nash. : Non-cooperative games. Ann. of Math. 54 (1951), 286-295. MR 0043432 | Zbl 0045.08202
[8] B. Peleg. : Existence theoгem foг the bargaining set $M_1^{(i)}$. Bull. Amer. Math. Soc. 69 (1963), 109-110. MR 0144792
[9] B. Peleg. : The independence of game theory of utility theory. Bull. Amer. Math. Soc. 72 (1966), 995-999. MR 0215623 | Zbl 0149.17004
[10] L. S. Shapley. : Some topics in two-person games. Ann. Math. Studies 52 (1964), 1-28. MR 0198990 | Zbl 0126.16204
[11] L. S. Shapley: Equilibrium points in games with vector payoffs. Naval Research Logistic Quarterly 6 (1959), 67-61. MR 0109748
Partner of
EuDML logo