[1] D. Baxter J. Saltz M. Schultz S. Eisenstat, and K. Crowley: An experimental study of methods for parallel preconditioned Krylov methods. Tech. Rep. RR-629, Department of Computer Science, Yale University, 1988.
[3] M. Eiermann W. Niethammer, and R. S. Varga:
A study of semiiterative methods for nonsymmetric systems of linear equations. Numer. Math. 47 (1985), 505-533.
DOI 10.1007/BF01389454 |
MR 0812617
[6] R. W. Freund M. H. Gutknecht, and N. M. Nachtigal:
An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Statist. Comput. 14 (1993), 137-158.
DOI 10.1137/0914009 |
MR 1201315
[9] C. Lanczos:
An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Standards 45 (1950), 255-282.
DOI 10.6028/jres.045.026 |
MR 0042791
[11] N. M. Nachtigal L. Reichel, L. N. Trefethen:
A hybrid GMRES algorithm for nonsymmetric linear systems. SIAM J. Matrix Anal. Appl. 13 (1992), 796-825.
DOI 10.1137/0613050 |
MR 1168080
[12] W. Niethammer:
Iterative solution of non-symmetric systems of linear equations. In: Numerical Mathematics, Singapore 1988 (R. P. Agarwal, Y. M. Chow and S. J. Wilson, eds.), Birkhäuser, Basel, 1988, pp. 381-390.
MR 1022970 |
Zbl 0657.65050
[14] J. M. Ortega:
Introduction to Parallel and Vector Solution of Linear Systems. Plenum Press, New York, London, 1988.
MR 1106195 |
Zbl 0669.65017
[15] Y. Saad, M. H. Schultz:
GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7 (1986), 856-869.
DOI 10.1137/0907058 |
MR 0848568 |
Zbl 0599.65018
[18] C. Tong:
The preconditioned conjugate gradient method on the Connection Machine. In: Proceedings of the Conference on Scientific Applications of the Connection Machine (H. Simon, ed.), World Scientific, Singapore, New Jersey, London, Hong Kong, 1989, pp. 188-213.
Zbl 0725.65033
[19] H. A. Van der Vorst:
Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13 (1992), 631-644.
DOI 10.1137/0913035 |
MR 1149111 |
Zbl 0761.65023
[20] R. S. Varga:
Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs, New Jersey, 1962.
MR 0158502