Article
Keywords:
Dufiing's equation; damping; forced autonomous Duffing’s equation; Leray-Schauder continuation theorem; Wirtinger type inequalities; uniqueness; boundary value problem
Summary:
Let $g$: $\bold R\rightarrow \bold R$ be a continuous function, $e$: $[0,1]\rightarrow \bold R$ a function in $L^2[0,1]$ and let $c \in \bold R$, $c\neq 0$ be given. It is proved that Duffing's equation $u'' + cu' + g(u)=e(x)$, $0<x<1$, $u(0)=u(1)$, $u'(0)=u'(1)$ in the presence of the damping term has at least one solution provided there exists an $\bold R > 0$ such that $g(u)u\geq 0$ for $|u|\geq \bold R$ and $\int^{1}_{0}e(x)dx=0$. It is further proved that if $g$ is strictly increasing on $\bold R$ with $\lim_{u\rightarrow -\infty} g(u)=-\infty$, $\lim_{u\rightarrow \infty} g(u)=\infty$ and it Lipschitz continuous with Lipschitz constant $\alpha<4\pi^2+c^2$, then Duffing's equation given above has exactly one solution for every $e\in L^2[0,1]$.
References:
[1] Gupta C. P.:
On Functional Equations of Fred hoi in and Hammerstein type with Application to Existence of Periodic Solutions of Certain Ordinary Differential Equations. Journal of Integral Equations 3 (1981), 21-41.
MR 0604314
[2] Gupta C. P., Mawhin J.:
Asymptotic Conditions at the First two Eigenvalues for the Periodic Solutions of Lienard Differential Equations and an Inequality of E. Schmidt. Z. Anal. Anwendnngen 3 (1984), 33-42.
DOI 10.4171/ZAA/88a |
MR 0739844
[4] Loud W. S.:
Periodic Solutions of $x" + cx' + g(x) = \epsilon f(t)$. Mem. Amer. Math. Soc., Providence, RI, 1959.
MR 0107058
[5] Mawhin J.: Compacitè, Monotonie et Convexitè dans l'etude de problèmes aux limites semilinèaires. Sem. Anal. Moderne Université de Sherbrooke 19 (1981).
[6] Mawhin J.:
Landesman-Lazer type Problems for Non-linear Equations. Confer. Sem. Mat. Univ. Bari 147 (1977).
MR 0477923
[7] Mawhin J.:
Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Regional Conf. Math. Ser. Math, vol. 40, American Math. Society, Providence, RI, 1979.
MR 0525202 |
Zbl 0414.34025