Article
Keywords:
domain optimization; control of variational inequalities; Hencky's law of elasto-plasticity
Summary:
A minimization of a cost functional with respect to a part of a boundary is considered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-Kármán and piecewise linear stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.
References:
[1] G. Duvaut J. L. Lions:
Les inéquations en mécanique et en physique. Paris, Dunod 1972.
MR 0464857
[2] R. Falk B. Mercier:
Error estimates for elasto-plastic problems. R.A.I.R.O. Anal. Numér. 11 (1977), 135-144.
MR 0449119
[3] I. Hlaváček:
Shape optimization of elasto-plastic bodies obeying Hencky's law. Apl. Mat. 31 (1986), 486-499.
MR 0870484 |
Zbl 0616.73081
[4] I. Hlaváček:
Domain optimization of axisymmetric elliptic boundary value problems by finite elements. Apl. Mat. 33 (1988), 213-244.
MR 0944785
[5] I. Hlaváček:
Shape optimization of elastic axisymmetric bodies. Apl. Mat. 34 (1989), 225- -245.
MR 0996898
[6] I. Hlaváček M. Křížek: Dual finite element analysis of 3D-axisymmetric elliptic problems. Numer. Anal. Part. Diff. Eqs. (To appear.)
[7] I. Hlaváček R. Mäkinen:
On the numerical solution of axisymmetric domain optimization problems. Appl. Math. 36 (1991), 284-304.
MR 1113952
[8] B. Mercier G. Raugel:
Resolution d'un problème aux limites dans un ouvert axisymétrique par élément finis en r, z et séries de Fourier en $\theta$. R.A.I.R.O. Anal. numér. 16 (1982), 405-461.
MR 0684832
[9] O. Pironneau:
Optimal Shape Design for Elliptic Systems. Springer-Verlag, New York 1983.
MR 0725856