Previous |  Up |  Next

Article

Keywords:
Sturm-Liouville; operator differential equation; operator algebraic equation; Cauchy problems; boundary value problems
Summary:
Cauchy problem, boundary value problems with a boundary value condition and Sturm-Liouville problems related to the operator differential equation $X^{(2)}-AX=0$ are studied for the general case, even when the algebraic equation $X^2-A=0$ is unsolvable. Explicit expressions for the solutions in terms of data problem are given and computable expressions of the solutions for the finite-dimensional case are made available.
References:
[1] N. Arley V. Borchsenius: On the theory of infinite-systems of differential equations and their application to the theory of stochastic processes and the perturbation theory of quantum mechanics. Acta Math. 76 (1944), 261-322. MR 0013494
[2] S. K. Berberian: Lectures on functional analysis and operator theory. Springer Verlag (1974). MR 0417727
[3] S. L. Campbell: Singular systems of differential equations. Pitman Publ. Co., 1980. MR 0569589 | Zbl 0419.34007
[4] E. A. Coddington N. Levinson: Theory or ordinary differential equations. MacGraw-Hill (1955). MR 0069338
[5] N. Dunford J. Schwartz: Linear Operators I. Interscience, 1957.
[6] I. Gohberg P. Lancaster L. Rodman: Matrix Polynomials. Academic Press, 1982. MR 0662418
[7] E. L. Ince: Ordinary Differential Equations. Dover, 1956. MR 0010757
[8] L. Jódar: Explicit solutions for second order operator differential equations with two boundary value conditions. Linear Algebra and Apl. 103 (1988), 35-53. MR 0943995
[9] L. Jódar: Explicit expressions for Sturm-Liouville operator problems. Proc. Edinburgh Math. Soc. 30 (1987), 301-309. MR 0892699
[10] J. G. Kemeny J. L. Snell A. W. Knapp: Denumerable Markov chains. Van Nostrand, Princeton . MR 0207042
[11] S. G. Krein: Linear differential equations in Banach spaces. Vol. 29, Trans. of Math. Monographs. Amer. Math. Soc. 1971. MR 0342804
[12] P. Lancaster: Lambda matrices and vibrating systems. Pergamon Press, 1966. MR 0210345 | Zbl 0146.32003
[13] P. Lancaster L. Rodman: Existence and uniqueness theorems for the algebraic Riccati equation. Int. J. Control, Vol. 32 (1980), 285-309. DOI 10.1080/00207178008922858 | MR 0584152
[14] P. A. Misnaevskii: On the Green's function and the asymptotic behavior of eigenvalues of Sturm-Liouville operator problems. Soviet. Math. Dokl. Vol. 13 (1972), 465-469.
[15] P. A. Misnaevskii: On the spectral theory for the Sturm-Liouville equation with operator coefficients. Math. U.S.S.R. Izvestija Vol. 10 (1976), No. 1, 145-180. DOI 10.1070/IM1976v010n01ABEH001683
[16] V. H. Milhailec: The solvability and completeness of the system of eigenfunctions of nonselfadjoint boundary value problems for a Sturm-Liouville operator equation. Soviet. Math. Dokl. 15 (1974), No. 5, 1327-1330.
[17] H. H. Murtazin: On the point spectrum of a class of differential operator. Soviet Math. Dokl. Vol. 15 (1974), No. 6, 1812-1814.
[18] H. H. Murtazin: On nonisolated points of the spectrum of elliptic operators. Math. U.S.S.R. Izvestija, Vol. 10 (1976), No. 2, 393-411. DOI 10.1070/IM1976v010n02ABEH001700
[19] M. N. Oguztorelli: On infinite systems of differential equations occurring in the degradation of polymers. Utilitas Math. 1 (1972), 141-155. MR 0313567
[20] L. Rodman: On factorization of operator polynomials and analytic operator functions. Rocky Mountain J. Math. 16 (1986), 153-162. DOI 10.1216/RMJ-1986-16-1-153 | MR 0829205 | Zbl 0596.47011
[21] A. L. Shields: Weighted shift operators and analytic function theory. Math. Surveys No. 13 (C. Pearcy Ed.), Amer. Math. Soc., 1974. MR 0361899 | Zbl 0303.47021
[22] S. Steinberg: Infinite systems of ordinary differential equations with unbounded coefficients and moment problems. J. Math. Anal. Appl. 41 (1973), 685-694. DOI 10.1016/0022-247X(73)90238-2 | MR 0330687 | Zbl 0255.34010
Partner of
EuDML logo