Previous |  Up |  Next

Article

Keywords:
finite elements; special exact curved finite elements; interpolation estimates; contact problems
Summary:
Special exact curved finite elements useful for solving contact problems of the second order in domains boundaries of which consist of a finite number of circular ares and a finite number of line segments are introduced and the interpolation estimates are proved.
References:
[1] J. Křižková O. Blahník: Application of Special Curved Elements to the Solution of the Electromagnetic Field. Applied Mathematics Notes, vol. 14 (1989), 8-25.
[2] L. Holuša A. Ženíšek: Applications of Curved Triangular Finite $C^1$ - Elements. Proceedings of Algorithms 79, Vysoké Tatry 1979, 128-136.
[3] V. Kolář J. Kratochvíl F. Leitner A. Ženíšek: Computation of Surface and Space Constructions by the Finite Element Method. (Czech). Praha, SNTL 1979.
[4] A. Kufner O. John S. Fučík: Function Spaces. Academia, Praha 1977. MR 0482102
[5] J. Nečas: Les méthodes directes en théorie des equations elliptiques. Academia, Praha 1967. MR 0227584
[6] K. Rektorys: Variační metody v inženýrských problémech a problémech matematické fyziky. Praha SNTL 1979.
[7] M. Zlámal: On the Finite Element Method. Numer. Math. 12 (1968), 394-409. DOI 10.1007/BF02161362 | MR 0243753
[8] M. Zlámal: Curved Elements in the Finite Element Method I. SIAM J. Numer. Anal. vol. 10. No 1 (1973), 229-240. DOI 10.1137/0710022 | MR 0395263
[9] M. Zlámal: Curved Elements in the Finite Element Method II. SIAM J. Numer. Anal. vol. 11. No 2 (1974), 347-462. DOI 10.1137/0711031 | MR 0343660
[10] A. Ženíšek: Interpolation Polynomials on the Triangle. Numer. Math. 15 (1970), 283-296. DOI 10.1007/BF02165119 | MR 0275014
[11] A. Ženíšek: Curved Triangular Finite $C^m$-Elements. Aplikace matematiky 23 (1978), 346-377. MR 0502072
[12] A. Ženíšek: Curved Triangular $C^m$-Elements and their Applications. (Czech), Sborník referátů III. letní školy Software a algoritmy numer. mat., Nové Město na Moravě 1979. MR 0566166
Partner of
EuDML logo