Previous |  Up |  Next

Article

Title: A remark on $\lambda$-regular orthomodular lattices (English)
Author: Rogalewicz, Vladimír
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 34
Issue: 6
Year: 1989
Pages: 449-452
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: A finite orthomodular lattice in which every maximal Boolean subalgebra (block) has the same cardinality $k$ is called $\lambda$-regular, if each atom is a member of just $\lambda$ blocks. We estimate the minimal number of blocks of $\lambda$-regular orthomodular lattices to be lower than of equal to $\lambda^2$ regardless of $k$. (English)
Keyword: Greechie diagram
Keyword: finite orthomodular lattice
Keyword: maximal Boolean subalgebra
MSC: 03G12
MSC: 05C65
MSC: 06C15
idZBL: Zbl 0689.06008
idMR: MR1026509
DOI: 10.21136/AM.1989.104375
.
Date available: 2008-05-20T18:37:52Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104375
.
Reference: [1] M. Dichtl: Astroids and pastings.Algebra Universalis 18 (1984), 380-385. Zbl 0546.06007, MR 0745498, 10.1007/BF01203371
Reference: [2] R. J. Greechie: Orthomodular lattices admitting no states.J. Combinatorial Theory 10 (1971), 119-132. Zbl 0219.06007, MR 0274355, 10.1016/0097-3165(71)90015-X
Reference: [3] G. Kalmbach: Orthomodular Lattices.Academic Press, London, 1984. Zbl 0538.06009, MR 0716496
Reference: [4] E. Köhler: Orthomodulare Verbände rnit Regularitätsbedingungen.J. of Geometry 119 (1982), 130-145. MR 0695705, 10.1007/BF01930874
Reference: [5] M. Navara V. Rogalewicz: The pasting constructions for Orthomodular posets.Submitted for publication.
Reference: [6] V. Rogalewicz: Any orthomodular poset is a pasting of Boolean algebras.Comment. Math. Univ. Carol. 29 (1988), 557-558. Zbl 0659.06006, MR 0972837
.

Files

Files Size Format View
AplMat_34-1989-6_4.pdf 588.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo