Article
Keywords:
discontinuities; system; one-step method; convergence; order of convergence; numerical solution of differential equations
Summary:
The author defines the numerical solution of a first order ordinary differential equation on a bounded interval in the way covering the general form of the so called one-step methods, proves convergence of the method (without the assumption of continuity of the righthad side) and gives a sufficient condition for the order of convergence to be $O(h^v)$.
References:
[1] I. Babuška M. Práger E. Vitásek:
Numerical processes in differential equations. SNTL, Praha 1966.
MR 0223101
[2] B. A. Chartres R. S. Stepleman:
Actual order of convergence of Runge-Kutta methods on differential equations with discontinuities. SIAM J. Numer. Anal. 11 (1974), 1193-1206.
DOI 10.1137/0711090 |
MR 0381316
[3] E. A. Coddington N. Levinson:
Theory of ordinary differential equations. Mc Graw-Hill, New York 1955.
MR 0069338
[4] A. Feldstein R. Goodman:
Numerical solution of ordinary and retardea differential equations with discontinuous derivatives. Numer. Math. 21 (1973), 1-13.
DOI 10.1007/BF01436181 |
MR 0381320
[5] P. Henrici:
Discrete variable methods in ordinary differential equations. J. Wiley, New York 1968.
MR 0135729
[6] T. Jankowski:
Some remarks on numerical solution of initial problems for systems of differential equations. Apl. Mat. 24 (1979), 421 - 426.
MR 0547045 |
Zbl 0447.65039
[7] T. Jankowski:
On the convergence of multistep methods for ordinary differential equations with discontinuities. Demostratio Math. 16 (1983), 651 - 675.
MR 0733727 |
Zbl 0571.65065
[9] J. Szarski:
Differential inequalities. PWN- Polish. Scient. Publ., Warsaw 1967.
Zbl 0177.39203