Previous |  Up |  Next

Article

Keywords:
non-smooth optimization; nonconvex optimization; substationary points of potential; small strains; uniaxial contact problem; nonmonotone reaction-displacement diagram; frictional effects; nonmonotone shearing; multivalued functions; variational-hemivariational inequalities; nonlinear elasticity
Summary:
Existence of a solution of the problem of nonlinear elasticity with non-classical boundary conditions, when the relationship between the corresponding dual quantities is given in terms of a nonmonotone and generally multivalued relation. The mathematical formulation leads to a problem of non-smooth and nonconvex optimization, and in its weak form to hemivariational inequalities and to the determination of the so called substationary points of the given potential.
References:
[1] J. J. Moreau: La notion de sur-potentiel et les liaisons unilatérales en élastostatique. C. R. Acad. Sc., Paris 267A (1968) 954-957. MR 0241038 | Zbl 0172.49802
[2] G. Duvaut, J. L. Lions: Les inéquations en Mécanique et en Physique. Dunod, Paris 1972. MR 0464857 | Zbl 0298.73001
[3] P. D. Panagiotopoulos: Inequality Problems in Mechanics. Convex and Nonconvex Energy Functions. Birkhäuser Verlag, Basel/Boston 1985. MR 0896909
[4] G. Fichera: Boundary Value Problems in Elasticity with Unilateral Constraints. In: Encyclopedia of Physics (ed. by S. Flügge) Vol. VI a/2. Springer Verlag, Berlin 1972.
[5] G. Fichera: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Mem. Accad. Naz. Lincei, VIII 7 (1964) 91 - 140. MR 0178631 | Zbl 0146.21204
[6] P. D. Panagiotopoulos: Non-convex Superpotentials in the Sense of F. H. Clarke and Applications. Mech. Res. Comm. 8 (1981) 335-340. DOI 10.1016/0093-6413(81)90064-1 | MR 0639382 | Zbl 0497.73020
[7] P. D. Panagiotopoulos: Nonconvex Energy Functions. Hemivariational Inequalities and Substationarity Principles. Acta Mechanica 48 (1983) 160-183. MR 0715806 | Zbl 0538.73018
[8] F. H. Clarke: Nonsmooth Analysis and Optimization. J. Wiley, N. York 1984.
[9] R. T. Rockafellar: Generalized Directional Derivatives and Subgradients of Non-convex Functions. Can. J. Math. XXXII (1980) 257-280. MR 0571922
[10] P. D. Panagiotopoulos: Une généralization non-convex de la notion du sur-potentiel et ses applications. CR. Acad. Sc., Paris 296B (1983) 1105-1108. MR 0720434
[11] P. D. Panagiotopoulos: Hemivariational Inequalities and Substationarity in the static theory of v. Kármán plates. ZAMM 65 (1985) 219-229. DOI 10.1002/zamm.19850650608 | MR 0801713
[12] P. D. Panagiotopoulos: Nonconvex Unilateral Contact Problems and Approximation. In: Proc. MAFELAP 1984 Conf. (J. Whiteman ed.) p. 547-553, Academic Press 1985. MR 0811061
[13] P. D. Panagiotopoulos: Nonconvex Problems of Semipermeable Media and Related Topics. ZAMM 65 (1985) 29-36. DOI 10.1002/zamm.19850650116 | MR 0841254 | Zbl 0574.73015
[14] P. D. Panagiotopoulos: Hemivariational Inequalities. Existence and Approximation Results. Proc. 2nd Meeting Unilateral Problems in Struct. Anal. (ed. G. delPiero, F. Maceri). CISM Publ. No. 288, Springer Verlag, Wien N. York, 1985 p. 223-246. Zbl 0621.49003
[15] P. D. Panagiotopoulos, A. Avdelas: A Hemivariational Inequality Approach to the Unilateral Contact Problem and Substationarity Principles. Ing. Archiv. 54 (1984) 401 - 412. DOI 10.1007/BF00537372 | Zbl 0554.73094
[16] P. D. Panagiotopoulos, C. C. Baniotopoulos: A hemivariational inequality and substationarity approach to the interface problem: Theory and prospects of applications. Eng. Anal. 1 (1984) 20-31. DOI 10.1016/0264-682X(84)90006-6
[17] H. Floegl, H. A. Mang: Tension Stiffening Concept Based on Bond Slip. ASCE, ST 12, 108 (1982), 2681-2701.
[18] C. Baniotopoulos: Analysis of Structures with Complete Stress-Strain Laws. Doct. Thesis Aristotle University Thessaloniki, 1985.
[19] K. C. Chang: Variational Methods for Non-differentiable Functionals and their Applications to Partial Differential Equations. J. Math. Anal. Appl. 80 (1981) 102- 129. DOI 10.1016/0022-247X(81)90095-0 | MR 0614246 | Zbl 0487.49027
[20] F. Lene: Sur les matériaux élastiques á énergie de déformation non quadratique. J. de Mécanique 13(1974) 499 - 534. MR 0375890 | Zbl 0322.35036
[21] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Akademia, Prague 1967. MR 0227584
[22] I. Hlaváček J. Haslinger J. Nečas J. Lovíšek: Solution of variariational inequalities in mechanics. (Slovak). Alfa, Bratislava 1982. MR 0755152
[23] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elastoplastic Bodies. Elsevier, Amsterdam 1981.
[24] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéeaires. Dunod/Gauthier-Villars, Paris 1969. MR 0259693
[25] I. Ekeland, R. Temam: Convex Analysis and Variational Problems. North-Holland, Amsterdam and American Elsevier, New York 1976. MR 0463994 | Zbl 0322.90046
[26] J. Rauch: Discontinuous Semilinear Diiferentail Equations and Multiple Valued Maps. Proc. A. M. S. 64 (1977) 277-282. DOI 10.1090/S0002-9939-1977-0442453-6 | MR 0442453
[27] M. C. Pelissier: Sur quelques problèmes non linéaires en glaciologie. Thèse Université Paris XI, 1975. MR 0439015
[28] Z. Mróz: Mathematical Models of Inelastic Material Behaviour. Solid Mechanics Division, Univ. of Waterloo, 1973.
[29] D. W. Haines, W. D. Wilson: Strain-Energy Density Function for Rubber-like Materials. J. Mech. Phys. Solids 27 (1979) 345-360. DOI 10.1016/0022-5096(79)90034-6 | Zbl 0425.73031
[30] P. Suquet: Plasticité et hornogènéisation. Thèse d'Etat. Université Paris VI, 1982.
[31] H. Matthies G. Strang, E. Christiansen: The Saddle Point of a Differential Program. In ''Energy Methods in Finite Element Analysis" ed. by R. Glowinski, E. Rodin, O. C. Zienkiewicz J. Wiley, N. York, 1979. MR 0537013
[32] D. Ornstein: A Non-Inequality for Differential Operators in the $L^1$-norm. Arch. Rat. Mech. Anal. 11 (1962) 40-49. DOI 10.1007/BF00253928 | MR 0149331
[33] A. Kufner O. John, S. Fučík: Function Spaces. Noordhoff International Publ., Leyden and Academia, Prague, 1977. MR 0482102
Partner of
EuDML logo