Article
Keywords:
discrete modified queue; busy period; idle period; geometrically distributed interarrival times
Summary:
The busy period distribution of a discrete modified queue $M/GI/c/\infty$, with finitely or infinitely many severs , and with different distribution functions of customer service times is derived.
References:
[1] A. Dvurečenskij, al.:
On a problem of the busy period determination in queues with infinitely many servers. J. Appl. Probab., 21 (1984), 201-206.
DOI 10.2307/3213680 |
MR 0732687
[2] A. Dvurečenskij G. A. Ososkov: A discrete modified counter with prolonging dead time. JINR, E 5-84-823, Dubna (1984).
[3] В. В. Калашников:
О совместном распределении пероидов занятости и простоев для систем обслуживания. Изв. АН СССР Техн. киб. № 6 (1971), 106-109.
Zbl 1170.92344
[4] В. Б Ивановский:
О свойствах выходных потоков в дискретных системах массового обслуживания. Авт. и Телемех. № 11 (1984) 32-39.
Zbl 1170.01392
[7] J. G. Shanthikumar:
Level crossing analysis of some variants of GI/M/1 queues. Opsearch. 19 (1982), 148-159.
MR 0696148 |
Zbl 0506.60094
[8] P. D. Welch:
On a generalized M/GI/1 queueing process in which the first customer of each busy period receives exceptional service. Oper. res. 12 (1964), 736-752.
DOI 10.1287/opre.12.5.736 |
MR 0176544
[9] G. F. Yeo:
Single server queues with modified service mechanisms. J. Austral. Math. Soc. 3 (1962), 491-502.
MR 0181026 |
Zbl 0134.35302