Previous |  Up |  Next

Article

Keywords:
discrete modified queue; busy period; idle period; geometrically distributed interarrival times
Summary:
The busy period distribution of a discrete modified queue $M/GI/c/\infty$, with finitely or infinitely many severs , and with different distribution functions of customer service times is derived.
References:
[1] A. Dvurečenskij, al.: On a problem of the busy period determination in queues with infinitely many servers. J. Appl. Probab., 21 (1984), 201-206. DOI 10.2307/3213680 | MR 0732687
[2] A. Dvurečenskij G. A. Ososkov: A discrete modified counter with prolonging dead time. JINR, E 5-84-823, Dubna (1984).
[3] В. В. Калашников: О совместном распределении пероидов занятости и простоев для систем обслуживания. Изв. АН СССР Техн. киб. № 6 (1971), 106-109. Zbl 1170.92344
[4] В. Б Ивановский: О свойствах выходных потоков в дискретных системах массового обслуживания. Авт. и Телемех. № 11 (1984) 32-39. Zbl 1170.01392
[5] A. G. Pakes: A GI/M/1 queue with a modified service mechanisms. Ann. Inst. Stát. Math. 24 (1972), 589-597. DOI 10.1007/BF02479785 | MR 0336844
[6] A. G. Pakes: On the busy period of the modified GI/G/1 queue. J. Appl. Prob. 10 (1973), 192-197. DOI 10.2307/3212506 | MR 0350902 | Zbl 0265.60091
[7] J. G. Shanthikumar: Level crossing analysis of some variants of GI/M/1 queues. Opsearch. 19 (1982), 148-159. MR 0696148 | Zbl 0506.60094
[8] P. D. Welch: On a generalized M/GI/1 queueing process in which the first customer of each busy period receives exceptional service. Oper. res. 12 (1964), 736-752. DOI 10.1287/opre.12.5.736 | MR 0176544
[9] G. F. Yeo: Single server queues with modified service mechanisms. J. Austral. Math. Soc. 3 (1962), 491-502. MR 0181026 | Zbl 0134.35302
Partner of
EuDML logo