Previous |  Up |  Next

Article

Keywords:
distribution of heat sources; Neumann boundary condition; Newton boundary condition; stationary heat equation; Poisson equation; boundary value problem
Summary:
Solving the stationary heat equation we optimize the temperature on part of the boundary of the domain under investigation. First the Poisson equation is solved; both the Neumann condition on part of the boundary and the Newton condition on the rest are prescribed, the distribution of the heat sources being variable. In the second case, the heat equation also contains a convective term, the distribution of heat sources is specified and the Neumann condition is variable on part of the boundary.
References:
[1] D. J. Andrews: Numerical Simulation of Sea-floor Spreading. J. Geoph. Res. 77 (1972), 6470-6481. DOI 10.1029/JB077i032p06470
[2] S. Fučík A. Kufner: Nonlinear Differential Equations. Elsevier, Amsterdam, 1980. MR 0558764
[3] S. Fučík J. Nečas V. Souček: Einführung in die Variationsrechnung. Teubner, Leipzig 1977. MR 0487654
[4] Y. Ida: Thermal Circulation of Partial Melt and Volcanism behind Trenches. Oceanol. Acta, 1981. Proc. 26th Intern. Geolog. Congress, Geology of Continental Margins Symposium, Paris 1980, July 7-17, p 241-244.
[5] A. Kufner O. John S. Fučík: Function Spaces. Academia, Praha 1977. MR 0482102
[6] X. LePichon J. Francheteau J. Bonnin: Plate Tectonics. Elsevier, Amsterdam etc. 1973.
[7] A. Marocco O. Pironneau: Optimum Design with Lagrangian Finite Elements: Design of an Electromagnet. Соmр. Meth. in Appl. Math. 15 (1978), 277-308.
[8] C. Matyska: The thermal Field of the Lithosphere in the Region of Mid-ocean Ridges Modelled on the Basis of Known Surface Temperature and Heat Flows. Studia geoph. et geodet. 28 (1984), 407-417.
[9] D. P. McKenzie J. M. Roberts N. O. Weiss: Convection in the Earth's Mantle: towards a Numerical Simulation. J. Fluid Mech. 62 (1974), part 3, 465-538.
[10] S. Mizohata: Теория уравнений с частными производными. Mir, Moskva 1977 (translated from Japanese).
[11] D. R. Moore N. O. Weiss: Two-dimensional Rayleigh-Bénard Convection. J. Fluid. Mech. 58 (1973), part 2, 289-312.
[12] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. MR 0227584
[13] J. Nečas I. Hlaváček: Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction. Elsevier, Amsterdam etc. 1981. MR 0600655
[14] P. Olson K. M. Corcos: A Boundary Layer Model for Mantle Convection with Surface Plates. Geoph. J. R. Astr. Soc. 62 (1980), 195-219. DOI 10.1111/j.1365-246X.1980.tb04851.x
[15] K. Rektorys: Variational Methods. Reidel C., Dordrecht-Boston 1977. MR 0487653
[16] G. Schubert C. Froidevaux D. A. Yuen: Oceanic Lithosphere and Asthenosphere: Thermal and Mechanical Structure. J. Geoph. Res. 81 (1976), 3525-3540. DOI 10.1029/JB081i020p03525
[17] J. G. Sclater J. Francheteau: The Implications of Terrestrial Heat Flow Observations on Current Tectonic and Geochemical Models of the Crust and Upper Mantle of the Earth. Geoph. J. R. Astr. Soc. 20 (1970), 509-542. DOI 10.1111/j.1365-246X.1970.tb06089.x
[18] L. D. Turcotte E. R. Oxburgh: Mantle Convection and the New Global Tectonics. Ann. Rev. Fluid. Mech. 4 (1972), 33-68. DOI 10.1146/annurev.fl.04.010172.000341
Partner of
EuDML logo