[1] J. Nečas I. Hlaváček:
Mathematical theory of elastic and elasto-plastic bodies: An introduction. Elsevier Sci. Publ. Соmр., Amsterdam, Oxford, New York, 1981.
MR 0600655
[2] P. G. Ciarlet:
The finite element method for elliptic problems. North-Holland Publ. Соmр., Amsterdam, New York, Oxford, 1978.
MR 0520174 |
Zbl 0383.65058
[3] B. M. Fraeijs de Veubeke:
A course in elasticity. Springer Verlag, New York, Heidelberg, Berlin, 1979.
MR 0533738
[4] V. Girault P. A. Raviart:
Finite element approximation of the Navier-Stokes equations. Springer-Verlag, Berlin, Heidelberg, New York, 1979.
MR 0548867
[5] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967.
MR 0227584
[6] I. Hlaváček:
Variational principles in the linear theory of elasticity for general boundary conditions. Apl. Mat. 12 (1967), 425-448.
MR 0231575
[7] I. Hlaváček:
Convergence of an equilibrium finite element model for plane elastosiatics. Apl. Mat. 24 (1979), 427-457.
MR 0547046
[9] J. Haslinger I. Hlaváček:
Convergence of a finite element method based on the dual variational formulations. Apl. Mat. 21 (1976), 43 - 65.
MR 0398126
[10] J. Haslinger I. Hlaváček:
Contact between elastic bodies - III. Dual finite Element Analysis. Apl. Mat. 26 (1981), 321-344.
MR 0631752
[11] M. Křížek: Equilibrium elements for the linear elasticity problem. Variational - difference methods in math. phys., Moscow, 1984, 81 - 92.
[12] G. Sander: Applications of the dual analysis principle. Proceedings of the IUTAM Symp. on High Speed Computing of Elastic Structures, Congrés et Colloques Do l'Université de Liege (1971), 167-207.
[14] V. B. Watwood B. J. Hartz:
An equilibrium stress field model for the finite element solutions of two-dimensional elastostatic problems. Internat. J. Solides and Structures 4 (1968), 857-873.
DOI 10.1016/0020-7683(68)90083-8
[15] C. Johnson B. Mercier:
Some equilibrium finite element methods for two-dimensional elasticity problems. Numer. Math. 30 (1978), 103-116.
DOI 10.1007/BF01403910 |
MR 0483904
[16] M. Křížek:
An equilibrium finite element method in three-dimensional elasticity. Apl. Mat. 27 (1982), 46-75.
MR 0640139
[18] D. J. Allman:
On compatible and equlibrium models with linear stresses for stretching of elastic plates. Energy methods in finite element analysis. John Wiley& Sons Ltd. Chichester, New York, Brisbane, Toronto, 1979.
MR 0537002
[19] B. F. de Veubeke O. C. Zienkiewicz: Strain energy bounds in finite element analysis by slab analogy. J. of Strain Analysis, 1967, vol. 2, No. 4.
[20] I. Babuška K. Rektorys F. Vyčichlo:
Mathematische Elastizitätstheorie der ebenen Probleme. Akademieverlag, Berlin 1960.
MR 0115343
[21] J. H. Michell: On the direct determination of stress in an elastic solid with application to the theory of plates. Proc. Lond. math. Soc. 1899, 31, 100.