[1] D. Begis R. Glowinski:
Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Appl. Math. & Optim. 2 (1975), 130-169.
DOI 10.1007/BF01447854 |
MR 0443372
[2] J. Haslinger I. Hlaváček:
Convergence of a finite element method based on the dual variational formulation. Apl. Mat. 21 (1976), 43 - 65.
MR 0398126
[3] I. Hlaváček:
The density of solenoidal functions and the convergence of a dual finite element method. Apl. Mat. 25 (1980), 39-55.
MR 0554090
[4] I. Hlaváček:
Dual finite element analysis for some elliptic variational equations and inequalities. Acta Applic. Math. 1, (1983), 121 - 20.
DOI 10.1007/BF00046832 |
MR 0713475
[5] J. Haslinger J. Lovíšek: The approximation of the optimal shape problem governed by a variational inequality with flux cost functional. To appear in Proc. Roy. Soc. Edinburgh.
[6] I. Hlaváček J. Nečas:
Optimization of the domain in elliptic unilateral boundary value problems by finite element method. R.A.I.R.O. Anal. numér, 16, (1982), 351 - 373.
DOI 10.1051/m2an/1982160403511 |
MR 0684830
[8] J. Haslinger P. Neittaanmäki:
On optimal shape design of systems governed by mixed Dirichlet-Signorini boundary value problems. To appear in Math. Meth. Appl. Sci.
MR 0845923
[9] P. Neittaanmäki T. Tiihonen: Optimal shape design of systems governed by a unilateral boundary value problem. Lappeenranta Univ. of Tech., Dept. of Physics and Math., Res. Kept. 4/1982.
[11] R. Fletcher:
Practical methods of optimization, vol. 2, constrained optimization. J. Wiley, Chichester, 1981.
MR 0633058 |
Zbl 0474.65043