Previous |  Up |  Next

Article

Keywords:
optimality conditions; properly efficient point; weakly efficient point; characterization of optimality; convex multicriteria optimization; global Pareto minimum; restricted Lagrangian
Summary:
Two conditions are given each of which is both necessary and sufficient for a point to be a global Pareto minimum. The first one is obtained by studying programs where each criterion appears as a single objective function, while the second one is given in terms of a "restricted Lagrangian". The conditions are compared with the familiar characterizations of properly efficient and weakly efficient points of Karlin and Geoffrion.
References:
[1] R. Abrams L. Kerzner: A simplified test for optimality. Journal of Optimization Theory and Applications 25 (1978), 161-170. DOI 10.1007/BF00933262 | MR 0484413
[2] A. Ben-Israel: Linear equations and inequalities on finite dimensional, real or complex, vector spaces: A unified theory. Journal of Mathematical Analysis and Applications 27 (1969), 367-389. DOI 10.1016/0022-247X(69)90054-7 | MR 0242865 | Zbl 0174.31502
[3] A. Ben-Israel A. Ben-Tal A. Charnes: Necessary and sufficient conditions for Pareto optimum in convex programming. Econometrica 45 (1977), 811 - 820. DOI 10.2307/1912673 | MR 0452684
[4] A. Ben-Israel A. Ben-Tal S. Zlobec: Optimality in Nonlinear Programming: A Feasible Directions Approach. Wiley-Interscience, New York, 1981. MR 0607673
[5] A. Ben-Tal A. Ben-Israel S. Zlobec: Characterization of optimality in convex programming without a constraint qualification. Journal cf Optimization Theory and Applications 20 (1976), 417-437. DOI 10.1007/BF00933129 | MR 0439190
[6] G. R. Bitran T. L. Magnanti: The structure of admissible points with respect to cone dominance. Journal of Optimization Theory and Applications 29 (1979), 473 - 514. MR 0552107
[7] Y. Censor: Pareto optimality in multiobjective problems. Applied Mathematics and Optimization 4 (1977), 41 - 59. DOI 10.1007/BF01442131 | MR 0488732
[8] A. Charnes W. W. Cooper: Management Models and Industrial Applications of Linear Programming. Vol. I. Wiley, New York, 1961. MR 0157774
[9] A. M. Geoffrion: Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications 22 (1968), 618 - 630. DOI 10.1016/0022-247X(68)90201-1 | MR 0229453 | Zbl 0181.22806
[10] S. Karlin: Mathematical Methods and Theory in Games. Programming and Economics. Vol. I, Addison-Wesley, Reading, Massachussetts, 1959. MR 1160778
[11] V. V. Podinovskii: Applying the procedure for maximizing the basic local criterion to solving the vector optimization problems. Systems Control 6, Novosibirsk, 1970 (In Russian).
[12] V. V. Podinovskii V. M. Gavrilov: Optimization with Respect to Successive Criteria. Soviet Radio, Moscow, 1975 (In Russian). MR 0454779
[13] R. T. Rockafellar: Convex Analysis. Princeton University Press, 1970. MR 0274683 | Zbl 0193.18401
[14] M. E. Salukvadze: Vector-Valued Optimization Problems in Control Theory. Academic Press, New York, 1979. MR 0563922 | Zbl 0471.49001
[15] S. Smale: Global analysis and economics III. Journal of Mathematical Economics 1 (1974), 107-117. DOI 10.1016/0304-4068(74)90002-0 | MR 0426823 | Zbl 0316.90007
[16] S. Smale: Global analysis and economics V. Journal of Mathematical Economics 1 (1974), 213-221. DOI 10.1016/0304-4068(74)90013-5 | MR 0426826 | Zbl 0357.90010
[17] S. Smale: Global analysis and economics VI. Journal of Mathematical Economics 3 (1976), 1-14. DOI 10.1016/0304-4068(76)90002-1 | MR 0426827 | Zbl 0348.90017
[18] S. Zlobec: Regions of stability for ill-posed convex programs. Aplikace Matematiky 27 (1982), 176-191. MR 0658001 | Zbl 0482.90073
Partner of
EuDML logo