Article
Keywords:
Existence; uniqueness; variational problem; Biot’s model; compactness method; approximate solution; finite elements; Euler’s backward method
Summary:
Existence and uniqueness theorem is established for a variational problem including Biot's model of consolidation of clay. The proof of existence is constructive and uses the compactness method. Error estimates for the approximate solution obtained by a method combining finite elements and Euler's backward method are given.
References:
[1] M. A. Biot:
General theory of three-dimensional consolidation. J. Appl. Phys. 12 (1941), p. 155.
DOI 10.1063/1.1712886
[2] J. R. Booker:
A numerical method for the solution of Bioťs consolidation theory. Quart. J. Mech. Appl. Math. 26 (1973), 457-470.
DOI 10.1093/qjmam/26.4.457
[4] A. Kufner O. John S. Fučík:
Function Spaces. Academia, Prague, 1977.
MR 0482102
[5] J. L. Lions:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod and Gauthier-Villars, Paris, 1969.
MR 0259693 |
Zbl 0189.40603
[6] R. Теmаm: Navier-Stokes Equations. North-Holland, Amsterdam, 1977.
[8] M. Zlámal:
Finite element solution of quasistationary nonlinear magnetic field. R. A.I.R.O. Anal. Num. 16 (1982), 161-191.
MR 0661454
[9] A. Ženíšek:
Finite element methods for coupled thermoelasticity and coupled consolidation of clay. (To appear.)
MR 0743885
[10] K. Rektorys:
The Method of Discretization in Time and Partial Differential Equations. D. Reidel Publishing Company, Dordrecht - SNTL, Prague, 1982.
MR 0689712 |
Zbl 0522.65059