[1] H. Bateman A. Erdélyi:
Higher transcendental functions. Vol. 2. New York, McGraw-Hill, 1953.
MR 0058756
[2] H. Bateman A. Erdélyi:
Tables of integral transforms, Vol. I, II. New York, McGraw-Hill, 1954.
MR 0061695
[6] Jahnke-Emde-Lösch: Tafeln höherer Funktionen. Stuttgart, Teubner, 1960.
[7] N. L. Johnson S. Kotz: Continuous multivariate distributions. New York, J. Wiley, 1972.
[8] O. Kropáč:
Relations between distributions of random vibratory processes and distributions of their envelopes. Aplik. Matem., 17, 1972, pp. 75-112.
MR 0299032
[9] O. Kropáč: Rozdělení s náhodnými parametry a jejich inženýrské aplikace. Strojn. Čas. 33, 1980, pp. 597-622.
[11] O. Kropáč:
Some general properties of elliptically symmetric random processes. Kybernetika, 17, 1981, pp. 401-412.
MR 0648212
[12] S. Kullback:
The distribution laws of the difference and quotient of variables independently distributed in Pearson III laws. Ann. Math. Statist., 7, 1936, pp. 51 - 53.
DOI 10.1214/aoms/1177732546
[13] D. K. McGraw J. F. Wagner:
Elliptically symmetric distributions. IEEE Trans. Inform. Theory, IT-14, 1968, pp. 110-120.
DOI 10.1109/TIT.1968.1054081
[14] K. Pearson G. B. Jeffery E. M. Elderton:
On the distribution of the first product moment-coefficient, in samples drawn from an indefinitely large normal population. Biometrika, 21, 1929, pp. 164-193.
DOI 10.1093/biomet/21.1-4.164
[15] K. Pearson S. A. Stouffer F. N. David: Further applications in statistics of the $T_m (x)$ Bessel function. Biometrika, 24, 1932, pp. 293 - 350.
[17] G. N. Watson:
A treatise on the theory of Bessel functions. Cambridge, Univ. Press, 1944 (2nd edit.).
MR 0010746 |
Zbl 0063.08184