Article
Keywords:
existence of solution; nonlinear relation between intensity of stresses and deformations
Summary:
A nonlinear system of equations generalizing von Kármán equations is studied. The existence of a solution is proved and the relation between the solutions of the considered system and the solutions of von Kármán system is studied. The system considered is derived in a former paper by Lepig under the assumption of a nonlinear relation between the intensity of stresses and deformations in the constitutive law.
References:
[1] Ю.Р. Лепик:
Равновесие гибких упруго-пластических пластинок при больших прогибах. Инжинерный сборник, том XX, 1956, 37-51.
Zbl 0995.90522
[2] Н. Ф. Ершов:
Об упруго-пластическом изгибе пластинок при больших прогибах. Строительная механика и расчет сооружений. Н.-З, 1962.
Zbl 1005.68507
[3] О. John J. Nečas:
On the solvability of von Kármán equations. Aplikace matematiky 20 (1975), 48-62,
MR 0380099
[4] I. Hlaváček J. Naumann:
Inhomogeneous boundary value problems for the von Kármán equations, I. Aplikace matematiky 19 (1974), 253-269.
MR 0377307
[5] J. Franců:
On Signorini problem for von Kármán equations (The case of angular domain). Aplikace matematiky 24 (1979), 355 - 371.
MR 0547039 |
Zbl 0479.73041
[6] G. H. Knightly:
An existence theorem for the von Kármán equations. Arch. Rat. Mech. Anal., (1967), 233-242.
MR 0220472 |
Zbl 0162.56303
[7] И. В. Скрыпник:
Нелинейные еллщтгические уравнения высшего порядка. ,Наукова думка", Киев 1973.
Zbl 1131.90321
[8] R. Kodnár: Non-linear problems of the orthogonal anisotropic shallow shells. Proceedings of summer school "Theory of nonlinear operators". Abhandlungen der Akademie der Wissenschaften der DDR. N-6, 1977.