Previous |  Up |  Next

Article

Keywords:
simultaneous rank test procedures; hypothesis of randomness; marginal distributions; asymptotic distributions; quadratic rank statistics
Summary:
Simultaneous rank test procedures are proposed for testing of randomness concerning some marginals. The considered test procedures are analogous to those introduced by Krishnaiah for classical normal theory (see Krishnaiah (1965) Ann. Inst. Statist. Math. 17, 35-53).
References:
[1] Gupta D. S.: On a probability inequality for multivariate normal distribution. Aplikace Matematiky 21 (Í976), 1-4. MR 0391382 | Zbl 0362.60037
[2] Hušková M.: Multivariate rank statistics for testing randomness concerning some marginal distributions. J. Multivariate Anal. 5 (1975), 487-496. DOI 10.1016/0047-259X(75)90032-9 | MR 0458710
[3] Jensen D. R.: The joint distribution of Friedman's $\chi_r^2$-statistics. Ann. Statist. 2 (1974), 311-323. DOI 10.1214/aos/1176342665 | MR 0397981
[4] Jensen D. R.: The joint distribution of traces of Wishart matrices and some applications. Ann. Math. Statist. 41 (1970), 133-145. DOI 10.1214/aoms/1177697194 | MR 0263201 | Zbl 0188.51703
[5] Krishnaiah P. R.: On the simultaneous ANOVA and MANOVA tests. Ann. Inst. Statist. Math. 17 (1965), 35 - 53. DOI 10.1007/BF02868151 | MR 0192592 | Zbl 0138.14401
[6] Krishnaiah P. R.: Simultaneous test procedures under general MANOVA models. In Multivariate Analysis - II (P. R. Krishnaiah, Ed.) pp. 121-143, Academic Press, New York (1969). MR 0254975
[7] Roy J.: Step-down procedure in multivariate analysis. Ann. Math. Statist. 29 (1958), 1177-1187. DOI 10.1214/aoms/1177706449 | MR 0100938 | Zbl 0087.33907
[8] Roy S. N., and Gnanadesikan R.: Further contributions to multivariate confidence bounds. Biometrika 45 (1957), 581. MR 0090947
[9] Sen P. K., Krishnaiah P. K.: On a class of simultaneous rank order tests in MANOCOVA. Ann. Inst. Statist. Math. 26 (1974), 135-145. DOI 10.1007/BF02479809 | MR 0386141 | Zbl 0337.62051
[10] Šidák Z.: Rectangular confidence regions for the means of multivariate normal distributions. J. Amer. Stat. Assoc. 62 (1967), 626 - 633. MR 0216666
Partner of
EuDML logo