[1] J. E. Gunn:
The Solution of elliptic difference equations by semiexplicit iterative techniques. SIAM J. Numer. Anal. 2, 24-45 (1964).
MR 0179962
[2] M. M. Gupta:
Convergence and stability of finite difference schemes for some elliptic equations. Ph. D. thesis, University of Saskatchewan, Saskatoon, Canada (1971).
MR 2621802
[3] L. V. Kantorovich G. P. Akilov:
Functional analysis in normed spaces. New York: Pergamon Press 1964.
MR 0213845
[4] H. O. Kreiss:
Über die Stabilitätsdefinition für Differenzengleichungen die partieile Differentialgleichungen approximieren. Nordisk Tidskr. Informations - Behandling (BIT) 2, 153-181 (1962).
MR 0165712
[5] P. D. Lax, and B. Wendroff:
Difference schemes for hyperbolic equations with high order of accuracy. Comm. Pure Appl. Math. 17, 381-398 (1964).
DOI 10.1002/cpa.3160170311 |
MR 0170484
[6] G. G. O'Brian M. A. Hyman, and S. Kaplan:
A study of the numerical solution of partial differential equations. J. Math, and Phys. 29, 223 - 251 (1951).
MR 0040805
[7] R. D. Richtmyer, K. W. Morton: Difference methods for initialvalue problems. 2nd ed., New York: Interscience 1967.
[8] V. S. Ryabenkii, and A. F. Filippov:
Über die Stabilität von Differenzengleichungen. Berlin; Deutscher Verlag der Wissenschaften 1960.
MR 0123106
[9] A. A. Samarskii:
Classes of Stable Schemes. Ž. Vyčisl. Mat. i Mat. Fiz. 7, 1096-1133 (1967).
MR 0221792
[10] A. A. Samarskii: Necessary and Sufficient conditions for the stability of two-layer difference schemes. Soviet Math. Dokl. 9, 946-950 (1968).
[11] A. A. Samarskii: Two layer iteration schemes for nonselfadjoint equations. Soviet Math. Dokl. 10, 554-558 (1969).