Previous |  Up |  Next

Article

Summary:
The problem of bending by a transverse load of orthotropic cylindrical beam is solved by reducing it to Almansi's problem. The present method is much simpler then those already known and allows some generalizations.
References:
[1] D. Yu. Panov: On torsion of almost prismatic bars. (Russian). Prikl. Math. and Mech., 2, 2 (1938).
[2] A. K. Rukhadze: The bending of almost prismatic beams. (Russian). Soob. Gruz. Akad. Nauk SSR, 8 (1948).
[3] A. Ia. Gorgidze: Torsion and bending of composite bars which are similar to prismatic bars. (Russian). Trudy Tbilis. Inst., 15 (1948).
[4] C. I. Borş: Încovoierea barelor aproape cilindrice alcătuite din mai multe materiale ortotrope. Stud. şi cere. Stunt. (Matematică) Acad. R.P.R. Filiala Iaşi, 10, 1 (1960).
[5] C. I. Borş: The bending of anisotropic composite beams which are similar to prismatic beams. (Russian). An. Stiinţ. Univ. Iaşi, 7, 1 (1961). MR 0129601
[6] G. M. Khatiashvili: Saint-Venant's problem for homogeneous orthotropic bodies similar to prismatic bodies. (Russian). Trudy Tbilis. Gasud. Univ., 110 (1964).
[7] G. M. Khatiashvili: Saint-Venant's problems for homogeneous anisotropic bodies approximately similar to prismatic. Theory of Plates and Shells, Bratislava, 1966.
[8] C. I. Borş: Teoria elasticitaţii corpurilor anizotrope. Edit. Acad. R.S. Romania, Bucureşti, 1970.
[9] G. M. Khatiashvili: On Almansi's problem for an orthotropic cylindrical beam. (Russian). Aplikace Matematiky, 8, 4 (1963).
[10] С. I. Borş: On Almansi-Michell's problem for orthotropic beams. Redinc. Accad. dei Lincei, 48, 6 (1970). Zbl 0213.26803
[11] S. G. Lekhnitski: Theory of elasticity of anisotropic body. (Russian). Moskva-Leningrad, 1950.
Partner of
EuDML logo