Previous |  Up |  Next

Article

Summary:
Transport equation for the function of the neutron density in a non-multiplying medium is discussed provided the initial distribution is given. The medium and source characteristics are considered generally to be functions of time. Existence and uniqueness for the initial value problem is proved and some previous results of the author are generalized. Besides, some consequences for the discussion of the behaviour of Knudsen's gas in a thermal bath are shown.
References:
[1] J. Mika: The initial-value problem in neutron thermalization. Nukleonik 9 (1967), 303.
[2] J. T. Marti: Mathematical foundations of kinetics in neutron transport theory. Nukleonik 8 (1966), 159-163. Zbl 0134.12702
[3] I. Vidav: Existence and uniqueness of nonnegative eigenfunctions of the Boltzmann operator. Journal of Math. Ann. and Appl. 22 (1968), 144-155. DOI 10.1016/0022-247X(68)90166-2 | MR 0230531 | Zbl 0155.19203
[4] K. M. Case P. F. Zweifel: Existence and uniqueness theorems for the neutron transport equation. Journal of Math. Phys. 4, 11 (1963), 1376-85. DOI 10.1063/1.1703916 | MR 0158716
[5] J. Kyncl: Initial condition in the theory of neutron transport. Aplikace matematiky 4, 17 (1972), 245. MR 0311231
[6] V. Jarník: Integral calculus II. Prague, 1965.
[7] K. Andersen K. Shuller: J. Chem. Phys. 40 (1964), 633. MR 0160602
[8] M. Grmela J. Kyncl: Relaxation of the uniform Knudsen gas coupled to a thermal bath. Can. Journ. of Phys. 47 (1959), 24, 2815-23. DOI 10.1139/p69-345
[9] M. M. R. Williams: The slowing down and thermalization of neutrons. North-Holland Publishing Company, Amsterodam (1966).
[10] J. Potoček: Iterative methods. (reports lectured at Mathematical Institute of Charles University), Prague 1958-1959.
Partner of
EuDML logo