Previous |  Up |  Next

Article

Summary:
The article gives an alternative destription of the Balas' algorithm (for the solution of the zero-one linear programming problem) suitable as a propedeutics for our next article. In addition, is systematizes and generalizes some older tests.
References:
[1] Balas E.: An additive algorithm for solving linear programs with zero-one variables. Operations Research 13 (1965), No 4, 517-546. DOI 10.1287/opre.13.4.517 | MR 0183535 | Zbl 0194.19903
[2] Balas E.: Discrete programming by the filter method. Operations Research 15 (1967), No 5, 915-957. DOI 10.1287/opre.15.5.915 | MR 0281492 | Zbl 0153.21401
[3] Bertier P., Nghiem P. T.: Résolution de problèmes en variables bivalentes. (Algorithms de Balas et procédure SEP). SEMA, Paris, Note D.S, No 33, 1965.
[4] Brauer K. M.: A note on the efficiency of Balas' algorithm. Operations Research 15 (1967), No 6, 1169-1171. DOI 10.1287/opre.15.6.1169
[5] Byrne J. L., Proll L. G.: Initialising Geoffrion's implicit enumeration algorithm for the zero-one linear programming problem. The Computer Journal 12 (1969), No 4, 381 - 384. DOI 10.1093/comjnl/12.4.381 | MR 0253527 | Zbl 0185.42504
[6] Fleischmann B.: Computational experience with the algorithm of Balas. Operations Research 15 (1967), No 1, 153-155. DOI 10.1287/opre.15.1.153
[7] Freeman R. J.: Computational experience with a Balasian integer programming algorithm. Operations Research 14 (1966), No 5, 935-941. DOI 10.1287/opre.14.5.935
[8] Geoffrion A. M.: Integer programming by implicit enumeration and Balas' method. SIAM Review 9 (1967), No 2, 178-190. DOI 10.1137/1009031 | MR 0213156 | Zbl 0213.44702
[9] Geoffrion A. M.: An improved implicit enumeration approach for integer programming. Operations Research 17 (1969), No 3, 437-454. DOI 10.1287/opre.17.3.437 | Zbl 0174.20801
[10] Glover F.: A multiphase-dual algorithm for the zero-one integer programming problem. Operations Research 13 (1965), No 6, 879-919. DOI 10.1287/opre.13.6.879 | Zbl 0163.41301
[11] Glover F.: Surrogate constraints. Operations Research 16 (1968), No 4, 741 - 749. DOI 10.1287/opre.16.4.741 | MR 0250670 | Zbl 0165.22602
[12] Glover F., Zionts S.: A note on the additive algorithm of Balas. Operations Research 13 (1965), No 4, 546-549. DOI 10.1287/opre.13.4.546 | MR 0183536 | Zbl 0196.22705
[13] Golomb S. W., Baumert L. D.: Backtrack programming. Journal ACM 12 (1965), No 4, 516-524. DOI 10.1145/321296.321300 | MR 0195585 | Zbl 0139.12305
[14] Gue R. L., Liggett J. C., Cain K. C.: Analysis of algorithms for the zero-one programming problem. Communications ACM 11 (1968), No 12, 837-844. DOI 10.1145/364175.364209
[15] Hrouda J.: Jeden popis Balasova aditivního algoritmu se zřetelem k programování. Ekonomicko-matematický obzor 5 (1969), No 1, 45-59. MR 0242481
[16] Hrouda J.: Staging in Balas' algorithm. This issue, 354-369. MR 0465174 | Zbl 0243.90025
[17] Hrouda J.: Tři příspěvky k bivalentnímu lineárnímu programování. Příloha k výzkumné zprávě VZ-321/70, VÚTECHP, Praha 1970.
[18] Корбут А. А., Финкелъштейн Ю. Ю.: Дискретное программирование. Наука, Москва 1969. Zbl 1149.62317
[19] Lemke C. E., Spielberg K.: Direct search algorithms for zero-one and mixed-integer programming. Operations Research 15 (1967), No 5, 892-914. DOI 10.1287/opre.15.5.892 | MR 0281494 | Zbl 0168.18201
[20] Petersen C. C.: Computational experience with variants of the Balas algorithm applied to the selection of R & D projects. Management Science 13 (1967), No 9, 736-750.
[21] Walker R. J.: An enumerative technique for a class of combinatorial problems. Proceedings of Symposia in Applied Mathematics, vol. 10 (eds. R. Bellman, M. Hall), Providence 1960, 91-94. MR 0121306 | Zbl 0096.00603
[22] Výzkumná zpráva VZ-124/68. (řešitel J. Hrouda). VÚTECHP, Praha 1968.
[23] Výzkumná zpráva VZ-211/69. (řešitel J. Tesař). VÚTECHP, Praha 1969, 42-46.
Partner of
EuDML logo