Article
Keywords:
functional analysis
Summary:
The purpose of this article is to give some estimates for the spectral radius of the polynomial eigenvalue problem, i.e. to derive some estimates for the singularity of the operator-function $F$, $F(\lambda)=\lambda^mA_0-\sum^m_{k=1} \lambda^{m-k}A_k$ with the maximal absolute value. It is assumed that $A_1,\ldots,A_m,A^{-1}_0$ are bounded linear operators mapping a Banach space into itself. Further, it is assumed that the operators $B_j$, where $B_j=A^{-1}_0 A_j, j=1,2,\ldots,m$, leave a cone invariant.
References:
[2] M. A. Krasnoselski:
Положительные решения операторных уравнений. (Positive Solutions of Operator Equations.) Gostechizdat, Moscow 1962.
MR 0145331
[3] M. G. Krejn M. A. Rutman: Линейные операторы оставлающие инвариантным конус в пространстве Банаха. (Linear operators leaving a cone invariant in a Banach space.) Uspehi Mat. Nauk 3 (1948), 3-95.
[4] I. Marek:
Přibližné stanovení spektrálního poloměru kladného nerozložitelného zobrazení. (Spektralradius einer positiven unzerlegbaren Abbildung). Apl. mat. 12 (1967), 351 - 363.
MR 0225191
[5] I. Marek:
A note on $\chi$-positive operators. Commen. Math. Univ. Carolinae 4 (1963), 137-146.
MR 0167843
[6] I. Marek:
On the approximate construction of eigenvectors corresponding to a pair of complex conjugated eigenvalues. Mat.-Fyz. časopis Sloven. Akad. Vied 14 (1964), 277-288.
MR 0191081
[7] I. Marek:
Spektraleigenschaften der $\chi$-positiven Operatoren und Einschliessungssätze für den Spektralradius. Czechoslovak Math. J. 16 (1966), 493 - 517.
MR 0217622
[8] I. Marek:
Über einen speziellen Typus der linearen Gleichungen im Hilbertschen Raume. Časopis pěst. mat. 89 (1964), 155-172.
MR 0185443 |
Zbl 0187.38202
[10] P. H. Müller:
Eine neue Methode zur Behandlung nichtlinearer Eigenwertaufgaben. Math. Z. 70 (1959), 381-406.
MR 0105024
[11] I. Sawashima:
On spectral properties of some positive operators. Natur. Sci. Rep. Ochanomizu Univ. 15 (1964), 55-64.
MR 0187096 |
Zbl 0138.07801