Previous |  Up |  Next

Article

References:
[1] N. L. Alling: A characterization of abelian $\eta \sb{\alpha }$-groups in terms of their natural valuations. Proc. Nat. Acad. Sci. U.S.A. 47, 1961, 711-713. DOI 10.1073/pnas.47.5.711 | MR 0175983
[2] N. L. Alling: On the existence of real-closed fields that are $\eta \sb{\alpha }$-sets of power $\aleph \sb{\alpha }$. Trans. Amer. Math. Soc. 103, 1962, 341-352. MR 0146089
[3] P. Conrad: K-radical classes of lattice ordered groups. Algebra Carbondale 1980, Lecture Notes in Mathematics 848, Springer-Verlag 1981, 196-207. MR 0613186
[4] M. Darnel: Closure operators on radicals of lattice ordered groups. Czechoslov. Math. J. 37, 1987, 51-64. MR 0875127
[5] I. Fleischer: A characterization of lexicographically ordered $\eta \sb{\alpha }$-sets. Proc. Nat. Acad. Sci. U.S.A. 50, 1963, 1107-1108. DOI 10.1073/pnas.50.6.1107 | Zbl 0137.02101
[6] L. Fuchs: Partially ordered algebraic systems. Pergamon Press, Oxford, 1963. MR 0171864 | Zbl 0137.02001
[7] L. Fuchs: Riesz groups. Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 79, 1965, 1-34. MR 0180609 | Zbl 0125.28703
[8] K. R. Goodearl: Partially ordered abelian groups with interpolation. American Math. Society, Mathematical Surveys and Monographs, Vol. 20, Providence, 1986. MR 0845783 | Zbl 0589.06008
[9] K. R. Goodearl D. E. Handelman J. W. Laurence: Affine representations of Grothendieck groups and applications to Rickat C*-algebras and $\aleph \sb{0}$-continuous regular rings. Mem. Amer. Math. Soc. No 234, 1980. MR 0571998
[10] F. Hausdorff: Grundzüge der Mengenlehre. Leipzig 1914.
[11] W. C. Holland: Varieties of l-groups are torsion classes. Czechoslov. Math. J. 29, 1979, 11-12. MR 0518135 | Zbl 0432.06011
[12] J. Jakubík: Radical classes and radical mappings of lattice ordered groups. Symposia mathematica 31, 1977, Academic Press, New York-London, 451-477. MR 0491397
[13] J. Jakubík: Products of radical classes of lattice ordered groups. Acta Math. Univ. Comenianae 39, 1980, 31-42. MR 0619260
[14] J. Jakubík: On K-radical classes of lattice ordered groups. Czechoslov. Math. J. 33, 1983, 149-163. MR 0687428
[15] J. Jakubík: Radical subgroups of lattice ordered groups. Czechoslov. Math. J. 36, 1986, 285-297. MR 0831316
[16] J. Jakubík: Closure operators on the lattice of radical classes of lattice ordered groups. Czechoslov. Math. J. 38, 1988, 71-77. MR 0925941
[17] M. Jakubíková: Konvexe gerichtete Untergruppen der Rieszschen Gruppen. Matem. časopis 21, 1971, 3-8. MR 0302529
[18] N. Ja. Medvedev: On the lattice of radicals of a finitely generated l-group. (In Russian.) Math. Slovaca 33, 1983, 185-188. MR 0699088
[19] P. Ribenboim: On the existence of totally ordered Abelian groups which are $\eta \sb{\alpha }$-sets. Bull. Acad. Polon. Sci., sér. math., astr., phys. 13, 1965, 545-548. MR 0197591 | Zbl 0135.06201
Partner of
EuDML logo