Previous |  Up |  Next

Article

References:
[A] N. Alon: Eigenvalues and expanders. Combinatorica 6, (1986) 83-96. DOI 10.1007/BF02579166 | MR 0875835 | Zbl 0661.05053
[AM] N. Alon V. D. Milman: $\lambda_1$Xx, isoperimetric inequalities for graphs and superconcentrators. J. Comb. Th. B 38 (1985) 73-88. DOI 10.1016/0095-8956(85)90092-9 | MR 0782626
[AnM] W. N. Anderson T. D. Morley: Eigenvalues of the Laplacian of a graph. Lin. Multilin. Algebra 18 (1985) 141-145. DOI 10.1080/03081088508817681 | MR 0817657
[B] F. Barahona: The max-cut problem in graphs not contractible to K5. Oper. Res. Lett. 2 (1983) 107-111. DOI 10.1016/0167-6377(83)90016-0 | MR 0717742
[BGJR] F. Barahona M. Grötschel M. Jünger G. Reinelt: An application of combinatorial optimization to statistical physcis and circuit layout design. Oper. Res. 36 (1988) 493-513. DOI 10.1287/opre.36.3.493
[CDS] D. M. Cvetkovic M. Doob, and H. Sachs: Spectra of graphs - Theory and applications. VEB Deutscher Verlag der Wiss. Berlin 1979/Acad. Press, N.Y. 1979.
[F] M. Fiedler: Algebraic connectivity of graphs. Czechoslovak Math. J. 23 (98) (1973) 298-305. MR 0318007 | Zbl 0265.05119
[GN] M. Grötschel, G. L. Nemhauser: A polynomial algorithm for the max-cut problem on graphs without long odd cycles. Math. Programming 29 (1984) 28-40. DOI 10.1007/BF02591727 | MR 0740503
[GP] M. Grötschel, W. R. Pulleyblank: Weakly bipartite graphs and the max-cut problem. Oper. Res.Lett. / (1981) 23-27. DOI 10.1016/0167-6377(81)90020-1 | MR 0643056
[H] F. Hadlock: Finding a maximum cut of a planar graph in polynomial time. SIAM J. on Comp. 4 (1975) 221-225. DOI 10.1137/0204019 | MR 0379290 | Zbl 0321.05120
[Ka] R. M. Karp: Reducibility among combinatorial problems. in Complexity of Computer Computations, R. E. Miller, J. W. Thatcher (eds.), Plenum Press, New York 1972, pp. 85-103. MR 0378476
[Ke] A. K. Kel'mans: Properties of the characteristic polynomial of a graph. "Kibernetiky - na službu kommunizmu" vol. 4, Energija, Moskva-Leningrad, 1967, pp. 27-41 (in Russian). MR 0392633
[L] P. Lankaster: Theory of Matrices. Acad. Press, New York-London 1969. MR 0245579
[Lo] L. Lovász: On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25 (1979) 1-7. DOI 10.1109/TIT.1979.1055985 | MR 0514926
[LPS] A. Lubotzky R. Phillips, P. Sarnak: Ramanujan graphs. Combinatorica, 8 (1988) 261-277. DOI 10.1007/BF02126799 | MR 0963118
[Ml] B. Mohar: Isoperimetric numbers of graphs. J. Comb. Th. B, to appear. MR 1026065 | Zbl 0719.05042
[M2] B. Mohar: The Laplacian spectrum of graphs. submitted. Zbl 0840.05059
[NP] J. Nešetřil, S. Poljak: A remark on max-cut problem with an application to digital-analogue convertors. Oper. Res. Lett. 4 (1986) 289-291. DOI 10.1016/0167-6377(86)90031-3 | MR 0836264
[OD] G. I. Orlova, Y. G. Dorfman: Finding the maximal cut in a graph. Engrg. Cybernetics 10 (1972) 502-506. MR 0329962
[PT] S. Poljak, Z. Tuza: Maximum bipartite subgraphs of Kneser graphs. Graphs and Combinatorics, 3 (1987) 191-199. DOI 10.1007/BF01788540 | MR 0932133 | Zbl 0674.05064
[PT1] S. Poljak, D. Turzík: A polynomial heuristic for certain subgraph optimization problems with guaranteed lower bound. Discrete Math. 58 (1986) 99-104. DOI 10.1016/0012-365X(86)90192-5 | MR 0820844
[PT2] S. Poljak, D. Turzík: Maximum bipartite subgraphs of circulants. submitted.
[T] R. M. Tanner: Explicit concentrators from generalized n-gons. SIAM J. Alg. Disc. Meth. 5 (1984) 287-293. DOI 10.1137/0605030 | MR 0752035 | Zbl 0554.05045
Partner of
EuDML logo