Previous |  Up |  Next

Article

References:
[1] G. Anger: Funktionalanalytische Betrachtungen bei Differentialgleichungen unter Verwendung von Methoden der Potentialtheorie I. Akademie-Verlag, Berlin, 1967. MR 0230916 | Zbl 0163.11901
[2] H. Bauer: Harmonische Räume und ihre Potentialtheorie. Lecture Notes in Mathematics 22, Springer-Verlag, Berlin, 1966. MR 0210916 | Zbl 0142.38402
[3] U. Bauermann: Balayage-Operatoren in der Potentialtheorie. Math. Ann. 231 (1977), 181-186. DOI 10.1007/BF01361140 | MR 0492344 | Zbl 0351.31011
[4] J. Bliedtner W. Hansen: Simplicial cones in potential theory. Invent. Math. 29 (1975), 83-110. DOI 10.1007/BF01390188 | MR 0387630
[5] J. Bliedtner W. Hansen: Potential theory, An Analytic and Probabilistic Approach to Balayage. Springer-Verlag, Berlin, 1986. MR 0850715
[6] M. Brelot: Sur les ensembles effilés. Bull. Sci. Math. 68 (1944), 12-36. MR 0012364 | Zbl 0028.36201
[7] M. Brelot: Éléments de la theorie classique du potential. 2e ed. Centre de Documentation Universitaire Paris, 1961. MR 0106366
[8] M. Brzezina: Thinness and essential base for the heat equation. (Thesis in Czech) Charles University, Prague, 1986.
[9] M. Brzezina: Base and essential base in parabolic potential theory. Comm. Math. Univ. Carolinae 27 (1986), 631-632.
[10] C. Constantinescu A. Cornea: Potential theory on harmonic spaces. Springer-Verlag, Berlin, 1972. MR 0419799
[11] E. G. Effros L. J. Kazdan: On the Dirichlet problem for the heat equation. Indiana Univ. Math. J. 20 (1971), 683-693. DOI 10.1512/iumj.1971.20.20054 | MR 0268543
[12] C. L. Evans F. R. Gariepy: Wiener's criterion for the heat equation. Arch. Rational Mech. Anal. 78 (1982), 293-314. DOI 10.1007/BF00249583 | MR 0653544
[13] N. Garofalo E. Lanconelli: Wiener's criterion for parabolic equation with variable coefficient and its consequences. Trans. Amer. Math. Soc. (to appear). MR 0951629
[14] W. Hansen: Fegen und Dünheit mit Anwendungen auf die Laplace- und Wärmeleitungs- gleichungen. Ann. Inst. Fourier (Grenoble) 21 (1971), 79-121. DOI 10.5802/aif.363 | MR 0414910
[15] W. Hansen: Semi-polar sets are almost negligible. J. reine angew. Math. 314 (1980), 217-220. MR 0555915 | Zbl 0422.31009
[16] W. Hansen: Semi-polar sets and quasi-balayage. Math. Ann. 257 (1981), 495-517. DOI 10.1007/BF01465870 | Zbl 0458.31008
[17] E. Lanconelli: Sul problema di Dirichlet per l'equazione del calore. Ann. Math. Pura ed Appl. 97(1973), 83-113. DOI 10.1007/BF02414910 | MR 0372226
[18] I. Netuka: Thinness and the heat equation. Časopis Pěst. Mat. 99 (1974), 293-299. MR 0352504 | Zbl 0289.35037
[19] I. Netuka J. Veselý: Harmonic continuation and removable singularities in the axiomatic potential theory. Math. Ann. 234 (1978), 117-123. DOI 10.1007/BF01420962 | MR 0481063
[20] C. J. Oxtoby: Measure and category. Springer-Verlag, Berlin, 1971. MR 0584443 | Zbl 0217.09201
[21] G. I. Petrowsky: Zur ersten Randwertaufgabe der Wärmeleitungsgleichung. Compositio Math. 7 (1935), 383 - 419. MR 1556900 | Zbl 0010.29903
[22] B. Pini: Sulla regolarità e irregolarita della frontiera per il primo problema di valori al contorno relativo all'equazione del calore. Ann. Math. Pura ed Appl. 40 (1955), 69-88. DOI 10.1007/BF02416523 | MR 0075437 | Zbl 0066.07804
[23] V. Sternberg: Über die Gleichung der Wärmeleitung. Math. Ann. 101 (1929), 394-398. DOI 10.1007/BF01454850 | MR 1512542
[24] L. Stocia: On the thinness of a set at a point. Stud. Cerc. Mat. 38 (1986), 382-391. MR 0856749
[25] K. Uchiyama: A probabilistic proof and applications of Wiener's test for the heat operator. (preprint). Zbl 0678.60066
[26] A. N. Watson: Thermal capacity. Proc. London Math. Soc. (3) 37 (1978), 342-362. MR 0507610 | Zbl 0395.35034
[27] A. N. Watson: Thinness and boundary behaviour of potentials for the heat equation. Mathematika 32 (1985), 90-95. DOI 10.1112/S0025579300010901 | MR 0817112 | Zbl 0581.31005
[28] A. N. Watson: Green's functions, potentials, and the Dirichlet problem for the heat equation. Proc. London Math. Soc. (3) 33 (1976), 251-298. MR 0425145
[29] N. Wiener: The Dirichlet problem. J. Math. Phys. 3 (1924), 127-146. DOI 10.1002/sapm192433127
Partner of
EuDML logo