[1] G. Anger:
Funktionalanalytische Betrachtungen bei Differentialgleichungen unter Verwendung von Methoden der Potentialtheorie I. Akademie-Verlag, Berlin, 1967.
MR 0230916 |
Zbl 0163.11901
[2] H. Bauer:
Harmonische Räume und ihre Potentialtheorie. Lecture Notes in Mathematics 22, Springer-Verlag, Berlin, 1966.
MR 0210916 |
Zbl 0142.38402
[5] J. Bliedtner W. Hansen:
Potential theory, An Analytic and Probabilistic Approach to Balayage. Springer-Verlag, Berlin, 1986.
MR 0850715
[7] M. Brelot:
Éléments de la theorie classique du potential. 2e ed. Centre de Documentation Universitaire Paris, 1961.
MR 0106366
[8] M. Brzezina: Thinness and essential base for the heat equation. (Thesis in Czech) Charles University, Prague, 1986.
[9] M. Brzezina: Base and essential base in parabolic potential theory. Comm. Math. Univ. Carolinae 27 (1986), 631-632.
[10] C. Constantinescu A. Cornea:
Potential theory on harmonic spaces. Springer-Verlag, Berlin, 1972.
MR 0419799
[13] N. Garofalo E. Lanconelli:
Wiener's criterion for parabolic equation with variable coefficient and its consequences. Trans. Amer. Math. Soc. (to appear).
MR 0951629
[14] W. Hansen:
Fegen und Dünheit mit Anwendungen auf die Laplace- und Wärmeleitungs- gleichungen. Ann. Inst. Fourier (Grenoble) 21 (1971), 79-121.
DOI 10.5802/aif.363 |
MR 0414910
[15] W. Hansen:
Semi-polar sets are almost negligible. J. reine angew. Math. 314 (1980), 217-220.
MR 0555915 |
Zbl 0422.31009
[19] I. Netuka J. Veselý:
Harmonic continuation and removable singularities in the axiomatic potential theory. Math. Ann. 234 (1978), 117-123.
DOI 10.1007/BF01420962 |
MR 0481063
[21] G. I. Petrowsky:
Zur ersten Randwertaufgabe der Wärmeleitungsgleichung. Compositio Math. 7 (1935), 383 - 419.
MR 1556900 |
Zbl 0010.29903
[22] B. Pini:
Sulla regolarità e irregolarita della frontiera per il primo problema di valori al contorno relativo all'equazione del calore. Ann. Math. Pura ed Appl. 40 (1955), 69-88.
DOI 10.1007/BF02416523 |
MR 0075437 |
Zbl 0066.07804
[24] L. Stocia:
On the thinness of a set at a point. Stud. Cerc. Mat. 38 (1986), 382-391.
MR 0856749
[25] K. Uchiyama:
A probabilistic proof and applications of Wiener's test for the heat operator. (preprint).
Zbl 0678.60066
[28] A. N. Watson:
Green's functions, potentials, and the Dirichlet problem for the heat equation. Proc. London Math. Soc. (3) 33 (1976), 251-298.
MR 0425145