Previous |  Up |  Next

Article

References:
[1] L. Chen: Some remarks on oscillation of second order differential equations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 67 (1979), 45-52. MR 0617274 | Zbl 0473.34013
[2] L. Chen, С. Yeh: Oscillation theorems for second order nonlinear differential equations with an "integrally small" coefficient. J. Math. Anal. Appl. 78 (1980), 49-57. DOI 10.1016/0022-247X(80)90209-7 | MR 0595763 | Zbl 0445.34007
[3] Y. I. Domshlak: Oscillation of solutions of second-order differential equations. Differential'nye Uravnenija 7 (1971), 205-214 (Russian).
[4] S. R. Grace, B. S. Lalli: Oscillation theorems for certain second order perturbed nonlinear differential equations. J. Math. Anal. Appl. 77 (1980), 205-214. DOI 10.1016/0022-247X(80)90270-X | MR 0591271 | Zbl 0443.34031
[5] J. R. Graef, P. W. Spikes: Asymptotic behavior of the nonoscillatory solutions of differential equations with integrable coefficients. Publ. Math. Debrecen, to appear. MR 0834772 | Zbl 0637.34046
[6] M. K. Grammatikopoulos: Oscillation theorems for second order ordinary differential inequalities and equations with alternating coefficients. An. Stiint. Univ. "Al. I. Cuza" lasi Sect. la Mat. 26 (1980), 67-76. MR 0582469 | Zbl 0442.34031
[7] V. L. Jannelli: Sull'esistenza ed il comportamento asintotico di una classe di soluzioni monotone dell'equazione $(р(х)f(у)у')' =- q(x) g(y)$. Boll. Un. Mat. Ital. С (6) 2 (1983), 307-316.
[8] I. V. Kamenev: Oscillation of solutions of a second-order differential equation with an "integrally small" coefficient. Differential'nye Uravnenija 13 (1977), 2141 - 2148 (Russian). MR 0477271 | Zbl 0411.34043
[9] M. R. Kulenovic, M. K. Grammatikopoulos: On the asymptotic behavior of second order differential inequalities with alternating coefficients. Math. Nachr. 98 (1980), 317-327. DOI 10.1002/mana.19800980124 | MR 0623709 | Zbl 0471.34025
[10] T. Kura: Oscillation theorems for a second order sublinear ordinary differential equation. Proc. Amer. Math. Soc. 84 (1982), 535-538. DOI 10.1090/S0002-9939-1982-0643744-8 | MR 0643744 | Zbl 0488.34022
[11] T. Kusano H. Onose, H. Tobe: On the oscillation of second order nonlinear ordinary differential equations. Hiroshima Math. J. 4 (1974), 491 - 499. DOI 10.32917/hmj/1206136836 | MR 0377183
[12] M. K. Kwong, J. S. W. Wong: An application of integral inequality to second order nonlinear oscillation. J. Differential Equations 46 (1982), 63 - 77. DOI 10.1016/0022-0396(82)90110-3 | MR 0677584 | Zbl 0503.34021
[13] M. K. Kwong, J. S. W. Wong: Linearization of second-order nonlinear oscillation theorems. Trans. Amer. Math. Soc. 279 (1983), 705-722. DOI 10.1090/S0002-9947-1983-0709578-6 | MR 0709578 | Zbl 0544.34024
[14] W. E. Mahfoud, S. M. Rankin: Some properties of solutions of $(r(t) \psi(x) x')' + a(t) f(x) = 0$. SIAM J. Math. Anal. 10 (1979), 49-54. DOI 10.1137/0510005 | MR 0516748 | Zbl 0397.34004
[15] Ch. G. Philos: Oscillation of sublinear differential equations of second order. Nonlinear Anal. 7 (1983), 1071-1080. DOI 10.1016/0362-546X(83)90016-0 | MR 0719359 | Zbl 0525.34028
[16] Ch. G. Philos: A second order superlinear oscillation criterion. Canad. Math. Bull. 27 (1984), 102-112. DOI 10.4153/CMB-1984-015-0 | MR 0725258 | Zbl 0494.34023
[17] V. A. Staikos, Y. G. Sficas: Oscillations for forced second order nonlinear differential equations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 60 (1973), 25-30. MR 0369814
[18] W. Walter: Differential and Integral Inequalities. Springer-Verlag, Berlin/New York, 1970. MR 0271508 | Zbl 0252.35005
[19] С. С. Yeh: An oscillation criterion for second order nonlinear differential equations with functional arguments. J. Math. Anal. Appl. 76 (1980), 72-76. DOI 10.1016/0022-247X(80)90059-1 | MR 0586644 | Zbl 0465.34043
[20] С. С. Yeh: Oscillation theorems for nonlinear second order differential equations with damped term. Proc. Amer. Math. Soc. 84 (1982), 397-402. DOI 10.1090/S0002-9939-1982-0640240-9 | MR 0640240 | Zbl 0498.34023
[21] С. С. Yeh: Comparison theorems for second order nonlinear differential equations. to appear. Zbl 0736.34021
Partner of
EuDML logo