Previous |  Up |  Next

Article

References:
[FZ_1] R. Frič, F. Zanolin: A sequential convergence group having no completion.$. (To appear.) MR 0790151
[FZ_2] R. Frič, F. Zanolin: Remarks on sequential convergence in free groups. (To appear.) MR 0863910
[FZ_3] R. Frič, F. Zanolin: Sequential convergence in free groups. (To appear.) MR 0928331
[HR] E. Hewitt, K. A. Ross: Abstract harmonic analysis. Vol. I. Springer-Verlag, Heidelberg, 1963. MR 0551496 | Zbl 0115.10603
[K] P. Kratochvil: Sequential convergence as a partial operation. General Topology and its Relations to Modern Analysis and Algebra V. (Proc. Fifth Prague Topological Sympos., 1981). Heldermann Verlag, Berlin, 1983, 442-447. MR 0698436
[N_1] J. Novák: On convergence groups. Czechoslovak Math. J. 20 (95) (1970), 357-374. MR 0263973
[N_2] J. Novák: On a free convergence group. Proc. Convergence Structures, Lawton 1980, Cameron University, Lawton, Oklahoma, 97-102. MR 0605123
[Z_1] F. Zanolin: Solution of a problem of Josef Novák about convergence groups. Bollettino Un. Mat. Ital. (5) 14-A (1977), 375-381. MR 0451220 | Zbl 0352.54017
[Z_2] F. Zanolin: A note on convergences in commutative groups. Rend. 1st. Mat. Univ. Trieste 13 (1981), 79-86. MR 0676472 | Zbl 0503.54003
[Z_3] F. Zanolin: Example of a convergence commutative group which is not separated. Czechoslovak Math. J. 34 (109) (1984), 169-171. MR 0743481 | Zbl 0546.54007
Partner of
EuDML logo