[1] W. W. Comfort S. Negrepontis:
The theory of ultrafilters. Springer-Verlag 1974.
MR 0396267
[2] L. Gillman M. Jerison:
Rings of continuous functions. Van Nostrand, Princeton, 1960.
MR 0116199
[4] R. Frič:
Sequential envelope and subspaces of the Čech-Stone compactification. General Topology and its Relations to Modern Analysis and Algebra III. (Proc. Third Prague Topological Sympos., 1971). Academia, Praha, 1972, 123-126.
MR 0353260
[5] R. Frič:
On the completion of sequential structures. Topology and its Appl. (Budva 1972), Beograd 1973, 94-96.
MR 0341419
[6] R. Frič:
Extension of sequentially continuous mappings. Comment. Math. Univ. Carolin. 16 (1975), 273-276.
MR 0372809
[7] R. Frič:
On $E$-sequentially regular spaces. Czechoslovak Math. J. 26 (101) (1976), 604-612.
MR 0428240
[8] R. Frič M. Hušek: On projectively generated spaces. Comment. Math. Univ. Carolin. 20 (1979), 194.
[9] R. Frič M. Hušek: Epireflective subcategories of convergence spaces. Eight Winter School on Abstract Analysis held January 27-February 10, 1980, Mathematical Institute of the Czechoslovak Academy of Sciences, Praha 1980, 68-72.
[10] R. Frič D. С. Kent:
Completion of sequential Cauchy spaces. Comment. Math. Univ. Carolin. 18 (1977), 351-361.
MR 0448300
[11] R. Frič V. Koutník:
Sequential structures. Convergence structures and applications to analysis. Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.-Technik, 1979, NR 4 N. Akademie Verlag, Berlin 1980, 37-56.
MR 0614000
[12] R. Frič V. Koutník:
Sequentially complete spaces. Czechoslovak Math. J. 29 (104) (1979), 287-297.
MR 0529516
[13] V. Koutník:
On sequentially regular convergence spaces. Czechoslovak Math. J. 17 (92) (1967), 232-247.
MR 0215277
[14] V. Koutník: Sequential envelopes and completeness. Proc. I. Internat. Sympos. on Extension theory of topological structures, Berlin, 1967. VEB Deutscher Verlag der Wissenschaften, Berlin, 1969, 141-143.
[15] S. Mrówka:
Recent results on $E$-compact spaces and structures of continuous functions. Proc. Univ. Oklahoma Top. Conf. (1972), 168-221.
MR 0358693
[16] J. Novák:
On convergence spaces and their sequential envelopes. Czechoslovak Math. J. 15 (90) (1965), 74-100.
MR 0175083
[17] J. Novák:
On sequential envelopes defined by means of certain classes of continuous functions. Czechoslovak Math. J. 18 (93) (1968), 450-465.
MR 0232335
[18] J. Terasawa:
Spaces $N \cup R$ need not be strongly $0$-dimensional. Bull. Pol. Acad. Sci. 25 (1977), 279-281.
MR 0451214