Previous |  Up |  Next

Article

References:
[1] J. Adámek, T. Sturm: Congruence lattices in a category. Czech. Math. J., 29 (1979), 385-395. MR 0536066
[2] J. T. Baldwin, J. Berman: The number of subdirectly irreducible algebras in a variety. Alg. Universalis, 5 (1975), 379-389. DOI 10.1007/BF02485271 | MR 0392765 | Zbl 0348.08002
[3] S. Burris, H. P. Sankappanavar: A course in universal algebra. Graduate Texts in Mathematics, n. 78, Springer-Verlag, (1981). MR 0648287 | Zbl 0478.08001
[4] С. С. Chang, H. J. Keisler: Model Theory. Studies in Logic, North-Holland, (1973). Zbl 0276.02032
[5] E. Fried G. Grätzer, R. Quackenbush: Uniform Congruence Schemes. Alg. Universalis, 10 (1980), 176-188. DOI 10.1007/BF02482900 | MR 0560139
[6] G. Grätzer: Universal Algebra. Springer-Verlag, 2nd ed., (1979). MR 0538623
[7] H. J. Keisler: The stability function of a theory. J. of Symb. Logic, Vol. 43, n. 3, (1978). DOI 10.2307/2273523 | MR 0503784 | Zbl 0434.03023
[8] B. Kutinová, T. Sturm: On algebraic closure of compact elements. Czech. Math. J., 29 (104), (1979), 359-365. MR 0536063
[9] P. Pudlák: A new proof of the congruence lattice representation theorem. Alg. Universalis, 6 (1976), 269-275. DOI 10.1007/BF02485835 | MR 0429699
[10] T. Sturm: Lattices of convex equivalences. Czech. Math. J., 29 (104), (1979), 396-405. MR 0536067 | Zbl 0433.06007
[11] W. Taylor: Residually small varieties. Alg. Universalis, 2 (1972), 33-51. DOI 10.1007/BF02945005 | MR 0314726 | Zbl 0263.08005
[12] S. Tulipani: On classes of algebras with the definability of congruences. Alg. Universalis, (to appear). MR 0654395 | Zbl 0499.08001
[13] S. Tulipani: On congruence lattice size of models of theories with definability of congruences. Alg. Universalis, (to appear).
Partner of
EuDML logo