Previous |  Up |  Next

Article

References:
[1] L. Gillman, M. Jerison: Rings of continuous functions. Van Nostrand, London, 1960. MR 0116199 | Zbl 0093.30001
[2] P. R. Halmos: Lectures on Boolean algebras. Van Nostrand, London, 1967. MR 0167440
[3] A. lonescu Tulcea, C. lonescu Tulcea: Topics in the theory of lifting. Springer-Verlag, New York, 1969. MR 0276438
[4] J. L. Kelley: General Topology. Van Nostrand, London, 1955. MR 0070144 | Zbl 0066.16604
[5] K. Kuratowski: Topology, Volume 1. Academic Press, New York, 1966. MR 0217750
[6] D. Maharam: On a theorem of von Neumann. Proc. Amer. Math. Soc., 9 (1958), pp. 987-994. DOI 10.1090/S0002-9939-1958-0105479-6 | MR 0105479
[7] J. Von Neumann, M. H. Stone: The determination of representative elements in the residual classes of a Boolean algebra. Fund. Math., 25 (1935), pp. 353 - 376. DOI 10.4064/fm-25-1-353-378 | Zbl 0012.24403
[8] J. С. Oxtoby: Measure and Category. Springer-Verlag, New York, 1970. MR 0584443
[9] K. P. S. Bhaskara Rao, M. Bhaskara Rao: Borel $\sigma$-algebra on [0, $\Omega$]. Manuscripta Mathematica, 5 (1971), pp. 195-198. DOI 10.1007/BF01443252 | MR 0293038
[10] K. P. S. Bhaskara Rao, M. Bhaskara Rao: A note on the countable chain condition and sigma-finiteness of measures. Bull. Austral. Math. Soc., 6 (1972), pp. 349-353. DOI 10.1017/S0004972700044610 | MR 0310165
[11] B. V. Rao: Lattice of Borel Structures. Coll. Math., 23 (1971), pp. 213 - 216. DOI 10.4064/cm-23-2-213-216 | MR 0322121 | Zbl 0328.28001
[12] H. Sarbadhikari, K. P. S. Bhaskara Rao: Complementation in the lattice of Borel structures. to appear in Coll. Math. Zbl 0285.04003
[13] W. Sierpiński: Cardinal and Ordinal numbers. PWN, Warsaw, 1958. MR 0095787
[14] R. Sikorski: Boolean algebras. Third Edition, Springer-Verlag, New York, 1969. MR 0242724 | Zbl 0191.31505
Partner of
EuDML logo