[4] F. X. Dorr S. V. Parter, L. F. Shempine:
Applications of the maximum principle to singular perturbation problems. Siam Review 15 (1973), pp. 43 - 88.
DOI 10.1137/1015002 |
MR 0320456
[5] W. Eckhaus, E. M. DeJager:
Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type. Arch. Rational Mech. Anal. 23 (1966) pp. 26-86.
DOI 10.1007/BF00281135 |
MR 0206464
[8] A. Erdelyi:
The integral equations of asymptotic theory, in Asymptotic Solutions of Differential Equations and Their Applications. Wiley, New York, 1964, pp. 211 - 229.
MR 0170061
[9] Gerald Houghton:
Approximation methods to evaluate the effect of axial dispersion in isothermal flow reactors. Can. J. Chem. Engng. 40 (1962), pp. 188-193.
DOI 10.1002/cjce.5450400503
[13] R. E. О'Маllеуу, Jr.:
A boundary value problem for certain non-linear second order differential equations with a small parameter. Arch. Rational Mech. Anal. 29 (1968), pp. 66- 74.
DOI 10.1007/BF00256459 |
MR 0231003
[14] R. E. O'Malley, Jr.:
A non-linear singular perturbation problem arising in the study of chemical flow reactors. J. Inst. Maths. Applies. 6 (1969), pp. 12-20.
DOI 10.1093/imamat/6.1.12
[15] S. V. Parter: Singular perturbations of second order differential equations. (unpublished paper).
[16] S. V. Parter:
Remarks on singular perturbation of certain non-linear two-point boundary value problems. SIAM J. Math, Anal. 3 (1972), pp. 295-299.
DOI 10.1137/0503029 |
MR 0312006
[18] M. H. Protter, H. F. Weinberger:
Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs, N. J., 1967.
MR 0219861