Previous |  Up |  Next

Article

References:
[1] M. G. Arsove: Continuous potentials and linear mass distributions. SIAM Review 2 (1960), 177-184. DOI 10.1137/1002039 | MR 0143926 | Zbl 0094.08005
[2] E. De Giorgi: Nuovi teoremi relativi alle misure (r - l)-dimensionali in uno spazio ad r dimensioni. Ricerche di Matematica 4 (1955), 95-113. MR 0074499
[3] N. Dunford, J. T. Schwartz: Linear operators. Part I, Interscience Publishers, New York, 1958. MR 0117523 | Zbl 0084.10402
[4] H. Federer: The Gauss-Green theorem. Trans. Amer. Math. Soc. 58 (1945), 44 - 76. DOI 10.1090/S0002-9947-1945-0013786-6 | MR 0013786 | Zbl 0060.14102
[5] H. Federer: The (Ф, k) rectifiable subset of n space. Trans. Amer. Math. Soc. 62 (1947), 114-192. MR 0022594
[6] H. Féderer: A note on the Gauss-Green theorem. Proc. Amer. Math. Soc. 9 (1958), 447-451. DOI 10.1090/S0002-9939-1958-0095245-2 | MR 0095245
[7] H. Federer: Curvature measures. Trans. Amer. Math. Soc. 93 (1959), 418-491. DOI 10.1090/S0002-9947-1959-0110078-1 | MR 0110078 | Zbl 0089.38402
[8] W. H. Fleming: Functions of several variables. Addison-Wesley Publishing Соmp., INC., 1965. MR 0174675 | Zbl 0136.34301
[9] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511-547. DOI 10.2307/1994580 | MR 0209503
[10] J. Král: Flows of heat and the Fourier problem. Czechoslovak Math. J. 20 (1970), 556-598. MR 0271554
[11] K. Kuratowski: Topology. vol. I, Academic Press, 1966. DOI 10.1016/B978-0-12-429201-7.50006-5 | MR 0217751 | Zbl 0163.17002
[12] N. S. Landkof: Fundamentals of modern potential theory. (Russian), Izdat. Nauka, Moscow, 1966. MR 0214795
[13] J. W. Milnor: Topology from the differentiable viewpoint. The University Press of Virginia, 1965. MR 0226651 | Zbl 0136.20402
[14] M. Miranda: Distribuzioni aventi derivate misure, Insiemi di perimetro localmente finito. Ann. Scuola Norm. Sup. Pisa 18 (1964), 27-56. MR 0165073 | Zbl 0131.11802
[15] I. Netuka: The Robin problem in potential theory. Comment. Math. Univ. Carolinae 12 (1971), 205-211. MR 0287021 | Zbl 0215.42602
[16] I. Netuka: Generalized Robin problem in potential theory. Czechoslovak Math. J. 22 (1972), 312-324. MR 0294673 | Zbl 0241.31008
[17] I. Netuka: The third boundary value problem in potential theory. Czechoslovak Math. J. 22 (1972) (to appear). MR 0313528 | Zbl 0242.31007
[18] V. D. Sapoznikova: Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries. (Russian), Problems Mat. Anal. Boundary Value Problems Integr. Equations (Russian), 35-44, Izdat. Leningrad. Univ., Leningrad, MR 0213597
Partner of
EuDML logo