Previous |  Up |  Next

Article

Title: Generalized Robin problem in potential theory (English)
Author: Netuka, Ivan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 22
Issue: 2
Year: 1972
Pages: 312-324
.
Category: math
.
MSC: 31B15
idZBL: Zbl 0241.31008
idMR: MR0294673
DOI: 10.21136/CMJ.1972.101100
.
Date available: 2008-06-09T13:56:57Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101100
.
Reference: [1] Ju. D. Biirago, V. G. Mazja: Some questions in potential theory and function theory for regions with irregular boundaries.(Russian), Zapiski nauc. sem. Leningrad, otd. MIAN 3 (1967).
Reference: [2] Ju. D. Burago V. G. Mazja, V. D. Sapoznikova: On the theory of potentials of a double and a simple layer for regions with irregular boundaries.(Russian), Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 3-34. Izdat. Leningrad. Univ., Leningrad, 1966. MR 0213596
Reference: [3] С. Constantinescu, A. Cornea: Ideale Ränder Riemannscher Flächen.Springer Verlag, Berlin, 1963. Zbl 0112.30801
Reference: [4] N. Dunford, J. T. Schwartz: Linear operators. Part I.Interscience Publishers, New York, 1958. MR 0117523
Reference: [5] E. De Giorgi: Nuovi teoremi relativi alle misure (r - l)-dimensionali in uno spazio ad r dimensioni.Ricerche di Matematica 4 (1955), 95-113. MR 0074499
Reference: [6] J. L. Doob: Boundary properties of functions with finite Dirichlet integrals.Ann. Inst. Fourier 12 (1966), 573-621. MR 0173783
Reference: [7] G. F. D. Duff: Partial differential equations.Oxford University Press, 1956. Zbl 0071.30903, MR 0078550
Reference: [8] H. Federer: The Gauss-Green theorem.Trans. Amer. Math. Soc. 58 (1945), 44-76. Zbl 0060.14102, MR 0013786, 10.1090/S0002-9947-1945-0013786-6
Reference: [9] H. Federer: A note on the Gauss-Green theorem.Proc. Amer. Math. Soc. 9 (1958), 447-451. Zbl 0087.27302, MR 0095245, 10.1090/S0002-9939-1958-0095245-2
Reference: [10] N. M. Günther: Die Potentialtheorie und ihre Anwendung auf Grundaufgaben der mathematischen Physik.Leipzig, 1957.
Reference: [11] O. D. Kellogg: Foundations of potential theory.Springer Verlag, Berlin, 1929. MR 0222317
Reference: [12] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511-547. MR 0209503, 10.2307/1994580
Reference: [13] J. Král: Flows of heat and the Fourier problem.Czechoslovak Math. J. 20 (95) (1970), 556-598. MR 0271554
Reference: [14] F. Y. Maeda: Normal derivatives on an ideal boundary.J. Sci. Hiroshima Univ. Ser. A-1 28 (1964), 113-131. Zbl 0192.20402, MR 0177126
Reference: [15] I. Netuka: Smooth surfaces with infinite cyclic variation (Czech).Časopis pro pěstování matematiky 96 (1971), 86-101. MR 0284553
Reference: [16] I. Netuka: The Robin problem in potential theory.Comment. Math. Univ. Carolinae 12 (1971), 205-211. Zbl 0215.42602, MR 0287021
Reference: [17] I. Netuka: An operator connected with the third boundary value problem in potential theory.Czechoslovak Math. J. 22 (97), (1972) (to appear). Zbl 0241.31009, MR 0316733
Reference: [18] I. Netuka: The third boundary value problem in potential theory.Czechoslovak Math. J. 22 (97), (1972) (to appear). Zbl 0242.31007, MR 0313528
Reference: [19] J. Plemelj: Potentialtheoretische Untersuchungen.Leipzig, 1911.
Reference: [20] J. Radon: Über die Randwertaufgaben beim logarithmischen Potential.Sitzungsber. Akad. Wiss. Wien (2a) 128 (1919), 1123-1167.
Reference: [21] V. D. Sapoznikova: Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries (Russian).Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 35 - 44, Izdat. Leningrad. Univ., Leningrad, 1966. MR 0213597
Reference: [22] L. С Young: A theory of boundary values.Proc. London Math. Soc. (3) 14A (1965), 300-314. Zbl 0147.07802, MR 0180891
.

Files

Files Size Format View
CzechMathJ_22-1972-2_13.pdf 1.257Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo