Previous |  Up |  Next

Article

References:
[1] G. Birkhoff: Lattice Theory. New York 1948. MR 0029876 | Zbl 0033.10103
[2] G. Birkhoff: Generalized Arithmetic. Duke Math. Journ. 9 (1942), 283-302. DOI 10.1215/S0012-7094-42-00921-9 | MR 0007031 | Zbl 0060.12609
[3] M. M. Day: Arithmetic of Ordered Systems. Trans. Amer. Math. Soc. 58 (1945), 1-43. DOI 10.1090/S0002-9947-1945-0012262-4 | MR 0012262 | Zbl 0060.05813
[4] B. Dushnik E. W. Miller: Partially Ordered Sets. Am. Journ. Math. 63 (1941), 600-610. DOI 10.2307/2371374 | MR 0004862
[5] T. Hiraguchi: On the Dimension of Partially Ordered Sets. Sci. Rep. of the Kanazawa Univ. 1 (1951), 77-94. MR 0070681 | Zbl 0200.00013
[6] T. Hiraguchi: A note on a Mr. Komm's Theorems. Sci. Rep. of the Kanazawa Univ. 2 (1953), 1-3. MR 0076741
[7] H. Komm: On the Dimension of Partially Ordered Sets. Am. Journ. Math. 70 (1948), 507-520. DOI 10.2307/2372194 | MR 0025541 | Zbl 0037.31903
[8] V. Novák: О dimensi lexikografického součtu částecně uspořádaných množin. Čas. pěst. mat. 86 (1961), 385-391.
[9] V. Novák: On the Pseudodimension of Ordered Sets. Czech. Math. Journ. 13 (1963), 587-598, MR 0180507
[10] V. Novák: On the $\omega_v$-dimension and $\omega_v$-pseudodimension of ordered sets. Ztschr. f. math. Logik und Grundlagen d. Math. 10 (1964), 43-48. DOI 10.1002/malq.19640100204 | MR 0180508
[11] E. Szpilrajn: Sur l'extension de l'ordre partiel. Fund. Math. 16 (1930), 386-389. DOI 10.4064/fm-16-1-386-389
Partner of
EuDML logo