Previous |  Up |  Next

Article

Title: Integral representations for transition probabilities of Markov chains with a general state space (English)
Author: Šidák, Zbyněk
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 12
Issue: 4
Year: 1962
Pages: 492-522
Summary lang: Russian
.
Category: math
.
MSC: 60.65
idZBL: Zbl 0121.13105
idMR: MR0148115
DOI: 10.21136/CMJ.1962.100535
.
Date available: 2008-06-09T13:15:57Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/100535
.
Reference: [1] J. L. Doob: One-parameter families of transformations.Duke Math. J. 4 (1938), 752 - 774. Zbl 0020.10902, MR 1546095, 10.1215/S0012-7094-38-00466-1
Reference: [2] J. L. Doob: Stochastic processes.New York 1953. Zbl 0053.26802, MR 0058896
Reference: [3] N. Dunford J. T. Schwartz: Linear operators I.Interscience Publishers, New York 1958. MR 0117523
Reference: [4] W. Feller: Non-Markovian processes with the semigroup property.Annals of Math. Stat. 30 (1959), 1252-1253. MR 0110124, 10.1214/aoms/1177706110
Reference: [5] P. Halmos: Measure theory.New York 1950. Zbl 0040.16802, MR 0033869
Reference: [6] T. E. Harris: The existence of stationary measures for certain Markov processes.Proc. Third Berkeley Symposium, 1956, vol. II, 113 - 124. Zbl 0072.35201, MR 0084889
Reference: [7] D. G. Kendall: Integral representations for Markov transition probabilities.Bull. Amer. Math. Soc. 64 (1958), 358-362. Zbl 0198.22801, MR 0126880, 10.1090/S0002-9904-1958-10230-X
Reference: [8] D. G. Kendall: Unitary dilations of Markov transition operators, and the corresponding integral representations for transition-probability matrices.Probability & Statistics, The Harald Cramér Volume, New York 1959, 139-161. Zbl 0117.35801, MR 0116389
Reference: [9] D. G. Kendall: Unitary dilations of one-parameter semigroups of Markov transition operators, and the corresponding integral representations for Markov processes with a countable infinity of states.Proc. London Math. Soc. (3) 9 (1959), 417 - 431. Zbl 0117.35802, MR 0116390
Reference: [10] A. N. Kolmogorov: Zur Theorie der Markoffschen Ketten.Math. Ann. 112 (1936), 155 - 160. MR 1513044, 10.1007/BF01565412
Reference: [11] H. P. Kramer: Symmetrizable Markov matrices.Annals of Math. Stat. 30 (1959), 149 - 153. Zbl 0146.38601, MR 0103542, 10.1214/aoms/1177706367
Reference: [12] S. Leader: The theory of $L^p$-spaces for finitely additive set functions.Ann. of Math. 58 (1953), 528-543. MR 0058126, 10.2307/1969752
Reference: [13] E. Nelson: The adjoint Markoff process.Duke Math. J. 25 (1958), 671-690. Zbl 0084.13402, MR 0101555, 10.1215/S0012-7094-58-02561-4
Reference: [14] S. Orey: Recurrent Markov chains.Pacific J. Math. 9 (1959), 805 - 827. Zbl 0095.32902, MR 0125632, 10.2140/pjm.1959.9.805
Reference: [15] Т. А. Сарымсаков: Основы теории процессов Маркова.Москва 1954. Zbl 0995.90535
Reference: [16] В. Sz.-Nagy: Sur les contractions de l'espace de Hubert.Acta Sci. Math. Szeged 15 (1953 - 54), 87-92. MR 0058128
Reference: [17] K. Yosida S. Kakutani: Operator theoretical treatment of Markoff's process and mean ergodic theorem.Ann. of Math. 42 (1941), 188 - 228. MR 0003512, 10.2307/1968993
Reference: [18] A. Zygmund: Trigonometric series.Cambridge 1959. Zbl 0085.05601
.

Files

Files Size Format View
CzechMathJ_12-1962-4_3.pdf 4.906Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo