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REMARKS TO CHAOTIC VIBRATION 
IN NONLINEAR DYNAMICAL SYSTEMS 

OF TECHNICS 

FAZEKAS F., BUDAPEST, Hungary 

0. Non-linear systems (nl.Ss) and their phenomena have basic im­

portance in several sciences of our epoch. Fortunately, recent scienti­

fic results (e.g. ones about strange attractors) assured increasing 

efficiency for their investigations. It came to light, that nl.Ss -

already at small degree of freedom (f*-=2) and at certain constella­

tion of parameters - show irregular, aperiodical, s.c. chaotic be­

haviour (ChB), more exactly stochastic motion at deterministic noise. 

This appears as very sensitive to the initial conditions, that is small 

changes of them cause large ones in trajectories of motion which are 

mixed finally in complicated manner. These are important also for the 

engineers at handling nl. vibrating (v.) Ss. 

1. A very ample set of technical vibrating systems can be described 

by the non-linear differential equation (DE) |_l-3j 

mx + 2d x + k,x + k,x = f + f, sin at + f« cos (0t o 1 3 o 1 I 
(0<m,oJ) (1,1) 

with axial swing out x (or angular one if ), time t , mass m (or 

inertial moment 8 ), reversion k, (lin.) and k3 (cub.), viscose 

damping d = 2d (lin.), amplitudes fi»f2'f
0
 and c i r c u l a r frequency 

of exitation forces (period., const., resp.). - The eight parameters 

(m, 2d , k,, k3; f f, , f2, u) ) can be reduced e.g. into five 

by special transform [ll] 

q = x • |k3 |/m ^ x i | K3I ,<KX = kj/m , <fQ= dQ/m , (1,2) 

<xi = jj / | *3I . f^, namely (with s3 = sign k3 ) 

s3(q + 2cT q + K^q,) + q
3 = <* + a 1 sin IVt + <* 2 cos U)t . 

.(1,3) 

There are important for the practice 

o<) the' Duffing's case (Dc) k 1>0, k 3>0 ; ^ the general 

pendulum's case k,>0, k3< 0 and y^) the math, one k,>0, 

k3 = -k^e (for small angles |q|< l ); ^) the Holmes' case (He) 

k,< 0, k3> 0) , etc. (1,4*-^) 

- Referring to our detailed investigation on this large system given by 

(1), there will be shortly treated only some special cases showing s.c. 
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chaotic behaviours and some investigating methods to them. 

lator (at 

q 

2. The non-linear dissipative ( S > 0, so E=H-D), free oscil-

V tx i = 0 and s3 = 1) [l,é] 

2o-Qq Kiq 

and 

3 - 0 resp. = 

< p=à, £* - [q,p] > 
L^^p-qCK^q^J 

- f(q) 

(2,1) 

dfч having the derivatives F. = F(g.)=( ) 
1 1 d£ 

at the fixed point(s) (K of rest 0 » j 

ristical equations D.( X ) - I AE-F. | - A 2 + 25nX 

i 

K,-Зq* I " - -2<Tj i ( 2 , 2 ) 
f ( £ j ) and t he c h a r a c t e -

Q.w (v t 1 +3q 2 ) = 0 ( 2 , 3 ) 
W _ > 0 (De) by fo r l inear iza t ions i n small at p . - r e s u l t s a t K., • .„ 

j 2 r-9 1 o 
A = - O~n + i V <*) Q- vQ the sole go = 0 as an attractor (stable (o)" ~o 

focus (foг < ^
0

< w

0
) пode (foг 5Q>U)Q)); but at vҶ a í 2 < 0 

f0±LІг<-*l (He) it ramifies, s.c. "bifurcates" by • ,
 2
^ 

into two attractors P,
 9
 = + £1 e, (stable foe 

___ X , Z O L ——— u «_» 

nodes (for 41 ^ 2 < o )) - with trajectories sundered by a separat-
rix (for 5 = U) l/T ) - and into a hyperbolic point (instable saddle) 

u o il> S0) 

o [*.-] 
In a coпseгvative system (<Г 0, 

(2,4) 

H=c), the sole stable centre o 
A ,, 2, 
- ^ u \,uc; oy (

0
)

/ L 

£ i , 2
 = i y o e i a t K r - W o " < 0 ( H c ) by a , 2 ) A = ̂ î tfp 

- with trajectories by the separatrix ~ - • ~ */'-« - /*> '<- + u - n^ 

- and into an instable saudle 

at ^ i m ^ o > 0 ^Dc^ by (o)^ = ± i w o "bifurcates" into two stable 
centres 

P = +q j Ю 0-ą 12 (at H Q = 0) 

e 0 = ° 
3 . A) The n o n - l i n e a r f o r c e d o s c i l l a t o r 

q + 2<5"q + & ' q + K^q = <* i s i n U) X + c 
* ex s i n ( i V t + u ? ) 

( 2 , 5 ) 

COS *Я/t 

< q = x , 
(X 

*1 
f . / m , 

k 3 / m ^ 0 : + « J * > 0 , VC-

.j_ . i . _ , * 0 = 0 > ' ( 3 , 1 a , b ) 

responses t o t h e f i r s t approach q , ( t ) = q s i n u> t ( 0 < q , 0 < W = ?) 

- by D u f f i n g ' s s u p p o s i t i o n s ( o ^ i o 

( c ) q 1 2 2&Л (K 2 / q n = o 
' З ч o <W = V 

Qc;*
,
12 -~0~ ^ 2 ' "p 

frequency equations |_2j 

with the second approach and with circular 

q 3 ( t ) A q Q s i n tOt - K.-,qo /36U)2 s i n 3 u) t w i t h 
2. 3 , 2 ( Í V 

^ 2 = ( 3 , 2 a , b ) 

Г3qn) - < * i / q n > 2 c * o ^ = * 2 / q o < c t g f = °Ч / c < 2 = 

( 3 , 3 a - c ) = ( tvJ-W 2

+ | K

3 ^ o ) / 2 < f o ť ' «* = ^*1+*1> 
The resonance curve |q (k) ) | at 0<2<_T<6. shows for the cases 

yz.,K 0 a finite "beak" bending to a parabola and for 
the extrémům jq l < * 2 l / 2 Í > 0 

K 3 = 0 ( l i n . ) 
One can r e f e r h e r e t o s t a b l e and 
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instable solutions, to jumps, to hysteresis loop IllDj 

(const.) 

B) For the special case k) = 0 (at 0<2cf = <f , 0<VC,«1) 

q + cfq + W3q
3 - <x sin (Wt+u7) (3,4a) 

a particular (approximate) solution of inhom. DE is - frum (3,2) by 

derivation 

z1(t)-q3(t) = qoCO cos U) t \Y~ C O S y"° t wi th 

^ 2 =l , C3 qo " -V'o = °^2/j2qo 5 (3,4b-c) 

the general (such) one of horn. DE - got by Poisson's small parametrical 

method 

(qo+ ^"q0)rj
 + *3(ql + ^ q l + qo)0 + °^rv3)^° at 

q(t)ftqQ(t) + K.3q1(t) = z2Qe'St - iCj^J e"3<5t . (3,5a-b) 
2d 

The general (approximate) solution z2(t) = q(t) ol :..>roro. DE (3,4a) at 

an arbitrary initial value qn(0) = z9 and its tundsnce at t —> +oo 

is as follows: 

z2(t)--22(t) + z2(t)-*0 + z2(t) = z2(t+T) ^ (3,5c) 

so the periodic function z2(t) is the s.c. limit cycle G2 of velo­

city q(t) for asymptotic motion z2(t) of DE. 

C) Making on the plan F9z = (z,,z2) = (q,q) = £ a s.c. 

Poincar^-magping [4] on the time series t. = t + iT (at 0̂ =t <T = 

= 2*/U) , 0 < V C 3 « 1 and 0 < £ =e" 5 T<l) 

ex = e c v ^ e t v + e(t0)e-^T = £0 + i0t , 

= ̂ 0
 + Cgn-e0) = P ( £ n ) - ^ 0 = P(e0) at n->oo , (3,6) 

A A r-

consequently an arbitrary point f € GCF , so the whole limit cycle 

(LC) curve £(t) : G = P(G) too is a stable (fixed) point/path of the 

asymptotic motion on the plane £ = (q,q) determined by the DE (3,4a). 

Remarkable that LC £(t) (0^t<T = 1) is a closed planar curve 

GC F with two loops (because of sin cot and sin 3^t); but it is 

projection of the closed space curve H without loops in the phase 

space S3 <7 = (q,q,.yt) . 

D) Decreasing the frictional parameter £ (= «^/to qQ , so in­
creasing the circular frequency u) ) under the values of certain 

sequence £, > £ 2 > . . . > £ n > . .. > £m (>...) , then sequential £ 1 
point-bifurcations p —*<^ 2 ••• (period-duplications of LCs) 

»̂ 0 P 9 

F3G X = GT->G2T = G2->...-> Gn-> ...->G00 (-» chaos) . (3,7) 

Under £ , the (general spatial) asymptotic motion <o(t) becomes un-
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periodical, its trajectories 0"^, (t) very sensitively depending 

from the initial values 0"!.;?0 (t_) = C „ . adhere to a funny strange 
y\ O 1^ / .. v) 0 1 

attractor (surface) S D H : & (t) , similarly to the projected* 

(planar) asympt. motion- £ (t) , its trajectories 0.^° (t) ad­

hering to the strange attractors (curve) F-^G : £ (t) (on which 

the points £^ jump at random); practically, the forecasting of 

the asympt. motion £ (t) and still more one of er (t) is im­

possible for n > N [V] . 

4. A) In the former (mechanical) nl. vS(3.B-D), the developping of 

the chaos happened on the s.c. Feigenbaum-way (Fw.), namely through an 

infinite sequence r (with heaping value r. ) of period-doubling bi­

furcations (at the s.c. control parameter (cp.) r = S ). A similar 
chaotic formation presents itself in the (electronic) forced nl. vS Van 

der Pol given by the DE, or the equivalent SDEs 

u - |U'(l-u )u + u = a JLUCOS U) X , (cp.: r = a) (4,1) 

u = ^u j [ v - (u /3-u)] , v = -uAO + a cos if, (f> = CO , (4,2a-c) 

treated in detail in our [lie], together with variants. A such one 

describes the s.c. heart-arithmy meaning heartbeats with random vari­

able time intervals (4,3). - The most simple nl. SDEs of 3 vari­

ables defines the s.c. Rossler-model [4J : 

x = -(y+z), y = x+ay, z = b+xz-cz (cp.: r = c) (4,4a-c) 

has also a chaotic advance on Fw., further much S too [7]. 

B) A possible other way guides - by increasing of r - at a cer­

tain r. to the chaotic state; a typical example is the (hydrodynamic-

al) Lorenz-model [4,7]. - A third s.c. Hopf-Landau-way has a sequence 

r without r. , then a fourth s.c. Ruelle-Takens-Newhouse-way con-n t ' 
tents _2 (or _3) r-values before r. (hydrodyn. ones), etc. 

C) As in 3., one often studies the ChB by Pm. (of 1-,2-dim., with 

a cp. r), e.g. in 1-dim. case by q^i = f(r,q+) at qQ and t=0,l,2, 

..., or specially by the logistic mapping (Lm) [lie] 

qt + l = r qt ( 1" qt } " fL
(r'qt)» (0<q t<l,

 1 < r < 4 ) (4»5> 

and qualify its fixed points q̂  = fL(r,qi) = 0, (r-l)/r with Ljapu-

nov's stability number [lie] \ 2 = In | f' (r ,q2) | == 0 at K r ^ r ^ ; 

similarly the q2's bifurc. 

qj * f L 2 ) ( r ^ j ) = q 3 ' q4 W i t h X3 - °'5 ln|f-»2(r,^.)|<o 

at rl<r<r2 ; ...; r^ = 3,5699 ... (4,6) 

For r. , one has the limit [lie] 

lim (r k-r k - 1)/(r k + 1-r k - 1) = 4,6690 ... = <f , (4,7a-b) 
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-—k 
so r -r^ = c& . This Feigenbaum's constant is universal, being for 

large set of 1- and higher dim. mappings [lid]. Remarks about strange 

attractors and ones of fractal dim. (Hausdorff) [llel. 
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