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A NEW ITERATIVE ALGORITHM FOR SOLVING 
THE FICTITIOUS FLUXES METHOD PROBLEMS 

FOR ELLIPTIC EQUATIONS 

BAKHVALOV N.S.,KNYAZEV A.V., MOSKVA, USSR 

We consider a variant of the fictitious domain method for solving 

the Dirichlet problem 

with the diffusion coefficient K * . ^ L ^ C-^X ^ D ^ -Z > ^ in a com­

plex shaped domain 5 ) . Let us complement iD by "fictitious" domain/) 

so, that' in the resulting domain D (in fact O -* J> U J)'L ) the 

equation of the type A"U. - •? y -u~ e W ^ C Q ) ^ •£- € W ^ C a ) 

could be efficiently solved. In Q we construct the Dirichlet prob-

where iy jT K^Q in «0 , 

and K. is a large (may be infinitely large) constant. Let %) an(j 

Q be bounded Lipschitzian domains. The inequalities hold 

and if *--J is simply connected then 

I*--**' wiC-D) * C ^ > l l ^ l l ^ C O ^ * C l~L. 
In the .case |L=.-J-oo one can speak about fictitious fluxes in 2> 

Which provide, that g-ĉ -rf 1v - O in £> , so that f*uw/it = 

ss. t̂--3-W Ic^ in ^ 
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We introduce the flux vector p "̂  |<£ <VX£ui 1c a n d rewrite the 

equation (2j in the form 

t 
Let now Q^^cuic^LM^ \ IL^ C C-0 ~* 11-^(0) , where 

£>s cTa* g*cô ?( : W / C Q ' i "* ^ i * " ̂ Q ^ • We can eliminate the 
unknown function 1/L from (4) and obtain the equations 

and 1*. could be computed, for example, by the formulatCsA -?lct>- K. p 

if the (approximate) solution p of (5) had been found before. The 

main point here is that the operator Q is the orthoprojector in IL^CQ) 

on the subspace d£ •= <J •t-â  Ofr̂  CQ) ^ ---.CO) . We need (5) exept 

(2) first of all to treat the case {--.=.-*- oo , when K = 0 in 

X/ . In this case the uniqueness of p in (5) lost and we mean by 

p the normal (with minimal VL-^CQ) norm) solution of (5). 

Theorem 1. Let 4. -- I"- ̂  "*" °"° . The unique solution p of 

(5) exists for every Q, €• Q and the inequality 

I P - ^ C Q ) ~ c
 H - I L ^ C O ) , <-f c f t l ) 

is true, i.e. problem (5) is well-posed uniformly in l*-»*£-<4-. 

Theorem 2. Let p/> denote the solution p of (5) with K-> d. and 

ppo is the normal solutio/i of (5) with fc. --h oo . Then 

lPt-p'->iL J tCD) « <-*-"i H-I.-.CC-0-

The inequalities (3) are the consequences of this estimate. 

The numerical solution of equations (5) can be obtained by the 

simple process 

e ^ f c t a V l p - - ° . - - < » . i . - ,r~f. <«> 
To study convergence properties of the method (6) we need the following 

statements. 

Lemma 1 . Let IfJl » { x ^ I L ^ ( a ) : *fii> X « O , *t-= g-u-W 1> i n «0 , 
for a T > C N^ 1 ( Q ) ^ 
Then : (a)llV/ is a subspace in lt-x t ^ ) » 

(b) IM -. R CQ-'-K-1-) i f £ ~ + < ~ . ^ _ 
(c)lhll is an invarian t subspace for the operator Q K 
and Q X K ' 4 •= Q ^ l O ^ Q / - on M , 
(d) for the so lution p of (5) we have p - Ck, C INI 

(e) the se l fadjo in t operator Q^K'^Q^ : INI ~* lh/l 
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s a t i s f i e s the i n e q u a l i t i e s 

0 < c l ^ Q X « " 1 q > 1 * < | L - ± I on IhJl , i . e . 

o<c$ i-ci^a * y K ^ I M ^ O * £^1 M ^ a ^e/A//^^o 
a a a 
where C r̂  C f tt.) if dL £ K .£ 4-o-=> # 

Now statements (a)-(c) enable us to prove the important 

Lemma 2. Let % K'= p ^ - ^ . The the iterative method (6) is 

equivalent to - h Q ^ K * ̂  X*'- O Vv~ O, tJMi 5 t°s O 

and x J ^ e thJj . 
From Lemma 1 (d), (e) and Lemma 2 follows immediately 

Theorem 3. With appropriate choice of t (for example, with 

**-•- *£ ) the iterative approximations p from (6) converge to the 

solution p of (5) as fast as geometric sequence uniformly in TL^i.. 

In the case l ^ + o o ^ K^ ~ i we t a k e T<Ni £" Ldlv> f C l p** 

and from (6) we have 

V U ^ - Í Í C V Г ^ ^ U ^ Ä O , 1 ^ * 0 ^ ^ . . 

o 
Here t ^ K ^ W,*" C CI ) .. , so the residuals will belong to W ^ C d ) 

with support only on 7) SO . 
There exist generalizations of the results. First of all, K?\ 

and K might be matrices not functions. Secondly, one can substitute 

the original space W;J" C Q ) for the space W ^ ( Q ) with other 

boundary conditions (for instance, with periodic boundary condition 

when.D is a parallelepiped). Substituting in Wj^ C.C-) vector for 

scalar functions we get the method for solving elliptic systems. Some 

boundary value problems of the elasticity theory in displacements 

could also be solved \f<£coA is changed to the matrix (h , which 

transforms the displacements to an uppertriangle part of the deforma­

tion tensorf^i^ to & and - A to 6 G> with the boundary con­

ditions of "rigit contact" on 2 Q : ̂ ^ ^ ^ ~ O , ̂ t a * ^ /dh~~0 
(in such a case the equation Q,TG> <-<_ ~ m could be solved by the 

Fourier Method). r 
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