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1993 ACTA UNTVERSITATIS CAROUNAE-MATHEMATICA ET PHYSICA VOL. 34. NO. 2 

The Indexed Open Covering Theorem 

W. KULPA 

Katowice*) 

Received 14 April 1993 

The main result of this note is a theorem on an open covering of a lychonoff cube. There 
are some results related to the following question: under what conditions does f: Is -* UT map two 
opposite faces of the cube I5 onto disjoint sets? 

§1. An open covering theorem. Let S and T be non-empty sets. The symbol 
Is denotes the Tychonoff cube, 

Is •= {x: S - [ -1 ,1] | * is a map} 

and RT the product of T copies of the real line 1R, 

UT ••= {x: 7 - IR| x is a map} 

Both sets Is and 1R7 are equipped with the Cartesian product topology. For each 
s e 5 let us denote 

17 : = {x € Is: xs = - 1 } , /+ ••= {x e Is: xs = 1} 

the ^-opposite faces of the cube Is. The symbol dls denotes the pseudoboundary 
of the cube Is, 

dIs<=\J{I7"ll:seS} 

Sometimes, when a set S or T is finite, |5| = n or | T\ = m, we shall use symbols 
/", Rm instead of Is, UT. 

In this note the following result plays a central role. 

The Indexed Open Covering Theorem. Let{Us: s e 5} be an open covering of 
the cube Is. Then there exist an index s <= S and a connected subset U c Us such 
that 17 n U T- 0 5̂  /+ n U. 

In order to demontrate an importance of this theorem let us prove. 

*) Instytut Matematyki, Uniwersytet Šlaski, ul. Bankowa 14, 40-007 Katowice, Poland 
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The Bohl-Brouwer Fixed Point Theorem. Any continuous mapf: Is - Is has 
a fixed point. 

Proof. Let / : / 5 - * / 5 be a continuous map and suppose that f(x) ¥> x for 
each x e Is. For each s e S, let 

Us--={xeIs:fs(x)*Xs}. 

From the supposition it follows that the family {Us: s e S} is a covering of Is. 
According to the Indexed Open Covering Theorem there exist an index s e S, a 
connected set U c Us, and points a, b £ U such that as = — 1 and bs = 1. For 
each s e S, fs(x) e [ — 1,1] and so 

fs(a)-as = l +fs(a) £ 0 & ftf) - b,-f&) - 1 * 0. 

Since w is connected there is a point c - [ / such that fs(c) — cs = 0. From the 
definition of the set Us we have ci Us, a contradiction with c <- U c f/5. The 
proof is complete. 

It will be shown in section 4 that the Indexed Open Covering Theorem is 
equivalent to the Bohl-Brouwer Theorem. 

§2. Cardinal dimension. Let r be a cardinal number finite or infinite. A normal 
space X is said to be of cardinal dimension greater than or equal to r, dc X ^ T, 
provided that there exists a family {(As, Bs): s e S}, \S\ ^ r, of pairs of non-empty 
disjoint closed sets i.e., As n Bs = 0 for all s e 5 such that for every open covering 
{Us: s e S] of .AT there exists an index 8 e 5 and a connected set U c Us such that 

A normal space X is said to be of dimension r, dc X = r, provided that 
dc X ^ T and the inequality dc A" ^ r\ does not hold for any r\ > r. 

In the definition of cardinal dimension it is possible that 5 = 0. Thus for each 
normal space X we have dc X ^ 0. On the other hand, the definition does not 
guarantee that for every normal space X there exists a cardinal number r such that 
dc X = T. We shall prove 

Theorem 1. dc Is = \S\. 

To prove this theorem we need two lemmas. 

Lemma 1. Let X be a normal space with dc X ^ r. Then there exist a con­
tinuous mapf: X^-+ Is, \S\ = r, and a set A a X such that f(A) c dls and for 
any continuous mapg: X -+ Us, g \ A = / | A implies Is C g(X). Moreover, if S 
is finite then A is a closed set. 

Proof. Let {(As, Bs): s e 5}, |5| = r, be a family of pairs of non-empty disjoint 
closed sets satisfying the conditions of the definition of cardinal dimension. Define 

A-=\J{Asu B,:seS\. 
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Since X is normal, there exists a continuous map / : X -* / s having the following 
property: for each s e S and for each x <= X 

xeAs=>fs(x)=-l & x*B, + fXx)-l. 

It is clear that f(A) c dls. Let g: AT -* R5 be a continuous map such that 
g | _A = / | A. We shall show that Is c g(.A )̂. Suppose that there is a point 
c e / 5 \g(A^. For each s e 5 let 

I / f « - { x € * : g j ( * ) * c,}. 

The supposition implies that the family {Us: s e 5} is an open covering of X. Coose 
an index s e 5, a connected set U c: Us and points a e £/ n ^ , b e U ^ Bs. 
Since g5(tf) — c5 ^ 0 and gs(b) — cs ^ 0 we infer that there is a point d e [/ such 
that g5(d) - c, - 0. Then di Us, a contradiction with d e [/ c Us. 

Lemma 2. Let Z c Rn fee a compact boundary subspace. Then for each con­
tinuous map f: A -* R"\{0}, vv/iere .4 is a closed subset of X, there exists a 
continuous map F: X - R" \{0} such that F \ A — /. 

Proof. (I). First, we shall show that if X c Rn is a compact boundary set then 
for each map / : Rn -* R" of class C1, the image f(X) is a boundary subset. 

The Sard Lemma (cf. Deimling [4]) asserts that the set f(D), where 

D'-={xz Rn:det/(jc) = 0}, 

has ^-dimensional Lebesgue measure equal to zero. Thus the set f(X n D), as a 
compact set of measure zero, is of first category. From the Inverse Function 
Theorem (cf. [4]) for each x e R" \ D there exists an open set U c R", x e U, such 
that / | U: U — f(U) is a homeomorphism onto the open subset f(U) of R". 
Thus f(X n U) is also a set of first category. Since the space Rn has a countable 
base, it is easy to observe that f(X) is a set of first category. From the Baire 
Category Theorem we infer that lntf(X) = 0. 

(II). Let us proceed to the proof. Since f(A) is a closed subset and 0 i f(A), 
there exists an e > 0 such that .6(0, e) n f(A) = 0, where fi(a, e) : = 
:a= (jte R": ||x — a|| < f}. According to the Stone-Weierstrass Theorem there 
exists a m a p / : R" - Rn of class C* such that ||/(*) - f(x)\\ < f for each x e A. 
The set /(A.) has empty interior and therefore there exists a point a i fi(X) such 
that 0 < || a|| < f. We have f(x) - a * 0 for each x e X Let us put 
g(jc) : = /i(x) — a. Then for each x z A, 

(1) ll/W " g(*)\\ < \ & ||g(*)|| > f 
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Define a continuous function r: X -+ R 

(2) r(x) «- max {|g(x)|, £ 

From (1) we get 

(3) r(jc)« |g(x)| for each JC€>1. 

Now let us put for each x e X, 

(4) G ( * ) i - K * ) ^ . 

From (2)-(4) we get 

(5) G\A-g\A & U | fc|. 

Let h(x):- /(*) - G(JC), for x € A. From (5) and (1) we have, \\h(x)\\ < f for 
each JC e A In view of the Tietze-Urysohn Theorem the map h: A -* B(0, J) has 
a continuous extension H: X — fl(0, f). Now, we can define a continuous exten­
sion F: X - R" \{0} of the map /, 

(6) F(x) «- //(*) + G(JC) , x*X. 

We have F | >1 « / and one can verify that ||F|| <£ £ because ||G|| ^ § and 
| j / / | | £ | yield, ||F(JC)|| £ ||G(JC)|| - \\H(x)\\ £ | - |. This completes the proof. 

Proof of Theorem 1. The Indexed Open Covering Theorem implies that 
dc Is S |5|. To prove the equality dc /5 -» |5| we must show that there is no 
cardinal number r > |5| such that dc /5 ^ r. Suppose that such a number r exists. 
Consider two cases: 

(I). \S\ is infinite. From Lemma 1 there exists a continuous map / : Is-^ IT, 
\T\ - r. But then (cf. [5], Chapter 3) 

17] - weight IT £ weight /( /5) S weight /5 - |5 | , 

a contradiction with |5| < \T\. 
(II). |5| is finite. Let |5| •- n. Without loss of generality we may assume that 

r — n + 1 and /5 is a compact boundary subspace of /T, where \T\ — n + 1. 
From Lemma 1 it follows that there exist a closed subset A of /5 and a continuous 
map / : A -* R 7 \{0} such that for each continuous extension F: /5 -* Rr of / we 
have IT c F(/5). But this contradicts Lemma 2. 

§3. On preserving of disjoint faces. In this section we need the following. 
Lemma 3. Let f: Is ~> X be a continuous map into a normal space X. Then 

dcAT^ |T|, where T ' - {s e S:f(I7) n /(/,+) - 0}. 
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Proof. For each t e T let us put At • - / ( / J) and Bt- - / ( / +). We shall verify 
that the family {(At9 Bt): t* T) of pairs of non-empty disjoint closed sets, realizes 
the definition of cardinal dimension.. Let {Ut: t e 7] be an open covering of X. For 
each s <- 5, set W, • - f~\Us) for 5 € r, and W, - 0 for 5 € S\ T The family 
{W5: s e 5} is an open covering of /5. According to the Indexed Open Covering 
Theorem there exist an index s* T c S and a connected set W c Ws such that 
/f n W ¥> 0 # /+ n W. It is clear that /(W) is connected and As n /(W) # 
* 0 * Bsr\ f(W). This completes the proof. 

Theorem 2. For eacA continuous map f: Is -* Rr tfte following inequality 
holds: \{s € 5:/( / f) n / ( / + ) - 0}| <> |7]. 

Proof. Let i: R r -* / r be a topological embedding. It is clear that 

f(l7) n /(/+) - 0 <=> ( i o / ) ( / ; ) n ( io / ) ( /+ ) - 0. 

Thus without loss of generality we may assume that /(/5) c / r . Observe that 
according to Lemma 3 the inequality 

| { 5 e S : / ( / r ) n / ( / + ) « 0 } | > \T] 

implies that dc f £ r > 17], a contradiction with Theorem 1. Thus Theorem 2 
is proved. 

Theorem 3. Assume that f: Is -+ UT is a continuous map. If 0 < \T\ < °o 
and \{s € S:f(i;) n /( /+) - 0}| - |7], tfort t/ze inferior o/ t/te set /(/5) is 
non-empty. 

Proof. Set AT«- / ( / 5). From Lemma 3 we infer that dc X £ | T|. Suppose that 
the subspace X c UT has empty interior. Then comparing Lemma 2 with 
Lemma 1 we get a contradiction. 

Theorem 4. LetO < \S\ < °o. Assume that f: Is -> Us is a continuous map 
such thatf(IJ) n /(/+) - 0 /or eacA s e S. Then the setf(dls) separates the 
Euclidean space Rs. 

Proof. Set A : — f(dl5), X: — /(/5). Repeating the proof of Lemma 1 we infer 
that there exists a continuous map gx: A -* d/5 such that for each continuous map 
g: X -+ Is, g i^gl -A implies g(X) — /5. But according to the Alexandroff-
Borsuk Separation Theorem (cf. Borsuk [2] or Alexandroff and Pasynkov [1], 
Chapter 8), the set A separates R". 

§4. The Poincarfe Theorem and its equivalent formulations. In this section let 
us fix a natural number n ^ 1 and denote by 

d(x,A) « - i n f { | x - a\\:a^A] 

the distance between the point x and the set A. 
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Theorem 5. The following statements are equivalent: 
(i) (the Poincart-Miranda Theorem). Letf: F -+ Rn be a continuous map such 

thatfi(ir) c ( - oo, 0] &fi(lt) c [0, °°) for each i £ n. Then there exists 
a point c £ T such that f(c) = 0. 

(ii) If pairs (Ff, F+), i= 1,..., n, of closed sets are such that F = Ff u F+ 

and 1^ c Ff, If c Ff for each i ^ n, then the intersection [){Ff n Ff: 
i ^ n} is non-empty. 

(Hi) If a family {Ul9..., Un} is an open covering of F then there exist: an index 
i ^ n and a connected set U c [/. such that IJ n U ¥> 0 ¥> If n U. 

(iv) (the Bohl-Brouwer Theorem). Any continuous map f:r-+In has a fixed 
point. 

Proof, (i) => (ii). For each i ^ n let us define v\ 

fi(x)'^d(x,Ff)-d(x,F+), xer 

Since /j" c Ff and If c Ff, we have for each i ^ n 

L(Ir)c(-oo,o] & L</.+)c[o, oo). 

According to (i) there is a point c e 7" such that /(c) = 0, where / = 
= (/i> • • •> /«) • /" "* -*"• This means that for each « ^ w, 

d(c, Ff) = d(c, F +) 

But c e F~ u Ff. Thus the following condition holds for each i ^ n, 

d(c,Ff) = 0 = d(c,F+). 

Since the sets Ft are closed, the above equalities are equivalent to 

c € f | { F r n f l + r i S n } . 

(ii) =* (iii). Suppose that (iii) does not hold. For each i ^ n let us define 

f/f : = |J{f/ c [/,: 1/ n /j" ̂ 0 , U is a connected component of £/,}, 

t/+:= i/^t/r. 
The sets [/, are open and U~[ n f/+ = 0. Denote by 

/ r - .= r\Uf , Fi+ == I"\UT -

From the supposition we get 

/ f c Ff, if c F,+ & /" = Ff u F;+ . 

From (ii) there is a point c e f|{/T n F,+: i ^ n}. But f|{/T n f)+
: / ^ n} = 

= /n\(J{f/ /: f iS «} implies that the family {£/,: i ^ n] is not a covering of r, 
a contradiction. 
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(iii) => (iv). A proof of this implication is given in §1. 
(iv) => (i). Let / : F -* Un be a continuous map such that 

ft/DC (-co.O] & /-.(/(
+) C [0, oo). 

For each i iS « let us put 

Fr-frX-^o], F?--fT\o,«). 
Now, define a continuous map g: F -+ R", g — (gl9..., gn), 

gi(x)^xi-d(x,Fr) + d(x,Fi
+). 

Since d(x, / f ) = 1 + *„ rf(jc, / + ) — 1 — xt and I\ c F/, we get 

- 1 - *, - d(x, IT) £ gi(x) £ xt + d(x, It) = 1. 

In consequence we infer that g(F) c ln. From (iv) there is a point c £ F such that 
g(c) — c. But this implies that for each i ^ n, 

d(c, Fr) - d(c, F + ) 

and c e F/~ u .f)+ yields for each / .^ «, 

rf(c, Ff ) - 0 - d(c, F +) 

or equivalently c e f\{Ft~ n F* : j ^ «} and so /(c) = 0. 
The statement (i) of Theorem 5 was announced by Poincarfc [6] in 1883 and 

rediscovered in 1940 by Miranda, who showed that it was equivalent to the 
Brouwer Fixed Point Theorem (cf. Browder [3]). 

Proof of the Indexed Open Covering Theorem. Let {Us: s e S] be an open 
covering of the cube /5. Since Is is a compact space there exists a finite set 
{sl9..., sn] c S such that 

IS - £/„ U . . . U £7 . 
ÍI 

Let us put F : = ISl X ... X /fii. Let A: F - / 5 be a continuous map such that for 
each i ^ /i, 

A(/r)c/5; & A(/+ )c /+. 

For example: let A,(;t) = 0 if 5 e 5\{sl5..., 5rt} and h(x) — JC5 if 5 e {s^,..., s j . 
Finally, let J^ : = h~\USl) for i - 1,..., n. From Theorem 5 (iii) it follows that 
there exist: an index i ^ n and a connected set W c Wt such that /f n W ¥> 
± 0 ^ It n W. It is clear that if £/, - A(W,), 1/ - A(W) and s - j , then 
/ ; n £/ 7- 0 ^ /+ n f/. 

We conclude this paper with a remark which enables us to estimate the signifi­
cance of the Bohl-Brouwer Theorem in dimension theory: 
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If there exists a normal space X such that dc X ^ r, then each continuous map 
/: / 5 -+ Is, \S\ — r, has a fixed point. 

We leave an easy proof of this remark to the reader. 
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