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A VĽCTOR ЪATTICE VARIANT OF THE ERGODIC THEOREM 

Peter Maličký 

This paper is in final form and no version of it v/ill be sub­

mitted for publication elsewhere. 

1. Introduction 

The purpose of this paper is to give a variant of the ergpdic 
theorem for functions with values in a vector lattice. Let (&ilf, P) 
be a probability measure space and T:.fl-*ll be a if -measurable . 
mapping. T is called measure preserving if P(T"" (A))-= P(A) for 
any A € if . 

Theorem 1.1: 

Let T: il-*i2 be a measure preserving mapping, of a probability 

measure space {R^ift P) • For any integrable function f: il —* IR 
there exists an integrable function g:Jl—^[R such that : 

k-i 

(i) lim -i- ) f (Tx( w) ) -» 8(to) almost everywhere 
1X0 k-< 

(ii) lim $ |g(u>)- JL £ ffn^t u)))| dP(u» - 0 . 
k-^oo .a ^ iso 

The parts (i) and (ii) belong to G.D.Birkhoff and J. von Neumann 

respectively. See [5 J pp. 30-38. 

It is convenient to describe the limit function g using the 

conditional mean value. Let ( il, y. P) be a probability measure spa­

ce and if0 be a G'-subalgebra of if . For any integrable if -measu­

rable function f: il —*JR there exists an integrable ^-measurable 

function g:iZ~* IR such that : 

J f (u»dP(u>) - j g(w) dP(to) for any A € if0 . 
A A 

The function f determines the function g uniquely almost every-
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where . All these facts may be found in [l] pp. 193-194-• The func­

tion g is called a conditional mean value of f with respect 

to Jf0 . We shall write g = E(f I yo) . 

In Theorem 1.1 it may be put g « E(f I V0) , where iP0 is the 

6"-algebra of all almost T-invariant sets. (A set A * if is called 

almost T- invariant if the symmetric difference A A T~ (A) is 

a zero set.) 

This paper uses the results of [3] concerning the mean value 

and the conditional mean value for vector lattice valued functions, 

see also [4] . A special c.ase of the presented ergodic theorem has 

been proved by E. Hrachovina, see [2j . 

2. Vector lattices 

A real vector space V is called a vector lattice if it has la 

partial ordering <. such that (V, < ) is a lattice and : 

V x, y, z fc V: x ^ y « = > x + z < y + z 

Vx, y € V: V 2 > 0: x < y = * 3 x < } y . 

Lattice operations are denoted by symbols V and A . 

If a € V then the symbol. I a. I denotes the element a v (-a) • 

A vector lattice V is called 6*-complete if every upper bounded 

sequence {s^} c V has a least upper bound which is denoted by 

the symbol v s^ (or equivalently, every lower bounded sequence 

{an} has a greatest lower bound which is denoted by A an ) . 

Definition 2.1: 

Let V be a (T-complete vector lattice. A sequence l8^} ^ V 

is called decreasing to 0 if : 

Vn: 0 < a ^ ^ % and A ^ = 0 . 

We write an \ 0 (n-*°°) in this case. 

A sequence {-%} c V is called converging to x € V if there 

exists a sequence (an) c V decreasing to 0 such that 

lxn - x I ̂  an for all n . V/e write -%-* x (n -* oo) in this case. 

Proposition 2.2: 

Let V be a ^-complete vector lattice, 
(i) A sequence (x,.} c V converges to x € V if and only if 

1 1 oo mo - c o •« 

\ x n ) i s bounded and x « A V x.,, = V A xra 

( i i ) a^ \ 0 , b n N 0 •* . (a^ + bn) > 0 
( i i i ) an \ 0 , 2 > 0 -> * a n \i 0 
( iv) x-̂  -* x , y n - * y **> (x n + yn) - * (x + y) 
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(v) xn —* x «> 2 xn —* 1 X . 

The following lemma will be important in the proof of the main 

result of this paper. 

Lemma 2.-3: 

Let V be a 6*-complete vector lattice and {an) c v, {^nklc^ 
be sequences such that : 
V n, k: b n ? k > 0 

V n: bn^k-* 0 (k-*°°) 
an N 0 (n -> <*>) . 
Put ck = A (an + bn k) . Then Vk: ck > 0 . and C}c-* 0 (k-*<*>). 

Proof: 

The inequality ck > 0 for all k is obvious. The sequence 

{ck} is bounded because 0 6 ck f ai + bi j- for all k and 
/ \ ' °° °° 

t>i v-*0 (k-»«*/. It means that the element A V c. exists. 
Since cv £ 0 for all k , by Proposition 2.2 it suffices to 
prove that A V c^ = 0 • We have : 

Y c i « y A ( a n + b n i ) < A V (aT1 + b-. .>.•) and 
j s * O j s k h.M ^ n * d hr< j«k v ^ l n » d 

0 0 9 . o o o o e o 00 00 00 

A Vc-i < A A . V (an + bn<i) = A A V (an + bn -0 = 
k** jsk ^ k«< Mf jsk Xi n » J h*H k«< j-k n n'J 

« A (an + A V bn 1) = A (an + 0) = A a = 0 . 
hH n k.H jak "»*- "M X1 h»* n 

Except for assumptions of lemma we used the obvious facts : 

00 00 00 00 

V A ( a n + bn i ) - A V ( a n + b n -?) and 

OO Ot» \ oo O0 OO OO 

A A V (a. + L J B A A v ( n + h . ) . 
KM hs4 j s k *1 n j D »** k«4 j=k l ^ - n > 0 

3. Integral and conditional mean value of vector lattice 

valued functions 

In this section we give a summary of results of author's 

paper [3] • 

Let (il, if, P) be a probability measure space and V be a 6*-
complete vector lattice* The symbol F(-Cl,V) denotes the set of 

all functions f:H —* V . Obviously, P(il,V) is a ^-complete 

vector lattice under natural operations and ordering. 
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Two functions f, g € .P(Ii,V) are called equivalent if there exists 

a set A € if such that P(A) =,.0 and V u> € II - A: f (w) « g(tu) . 

The set of all equivalence classes is denoted by ^(12, if, P, V) 

and it is a 6* -complete vector lattice under natural operations 

and ordering. A function f € p(il,V) is called simple if 

f (u;) = a^ for u) € A^ , where {A^} is a finite measurable par­

tition of SI and a^ * v .. We put 

S f (u>) dp(tu) = X. P(A-i)-a.: in this case. 
XL |«<f J- J. 

A class <f € ̂ (H,^?/Wis called simple if it contains some simple 

function f . 
We put E(y) = 1 V dP = J f (u;) dP(to) in this case. 7 xi ' si 

The set of all simple functions is denoted by L0(I2, !f, P, V) and the 

set of all simple classes is denoted by 26^(12, Vf P, V) . 

Let {fn} £ -P(i2,V) and f € F(il,V) .We say that a sequence 

{fn} converges to the function f uniformly almost everywhere if 

there exist A € y , i3^} C V such that : 

P(A) = 0 

V w € il - A: V n: I fn(^> -. f ( tu) I * an 

s^-* 0 (n —* °° ) . 

Obviously, the condition â ""* O may be replaced by a stronger 

one an ̂- O • We write fn~* f u. a. e. (n —*°°) in this case. 

Let t Yn) c 'FtntVt P,V) and <f £ (̂i-,y, P, Vj . \/e say that the se­

quence { yn} converges to the class y uniformly almost everywhere 

if fn""* f u. a. e. for some fn * % and f € y . We write 

fr "* If u. a. e. ( n —>«°) in this case. 

Let OU be a system of all vector subspaces of.<-?(!},:/, P, V) which 

contain X^ i£lsifiPlV) and are closed with respect to the convergen­

ce which was described above. Obviously, 7TI has the minimal ele­

ment with respect to inclusion. This vector space is denoted by 

X~(I2. if, P,V) . 

Theorem 3.1: 

( i ) * - ( ! * , ? / , V) i s a vector sub la t t i ce of f(ntVl P, V) , 
which is closed with respect to u. a. e. convergence. 

(ii) There exists a unique nonnegative linear extension E of 

E onto if~ ( il i !f, P, V) 1 which is continuous in the following 

sense <fh —> ̂  u. a. e. -» E(ft)-*E(p) . 
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Remark : We shall write E(y>) or S f dP for y>€ # ° ° ( . n , y, P, V) 
instead of 1 ( f ) . 

In a similar way it may be constructed a conditional mean value 

operator. Let (XI, y, P) be a probability measure sp^ce, if0 be a 

C-subalgebra of if and E(.iyo) be a conditional mean value ope­

rator for real functions. Take Y c^7(^-i^i Pt W ; ^ is an equivalen­

ce class of some simple function f of the form £ /CA'&A • 
ix.f . * i x 

Denote by y the equivalence class of the function 
h 

E E(^4. iy0)-ai . In this case f €iT(nt Sf#|P,V). Putting E(y/yo)=y 

we obtain a linear nonnegative operator E( J^h^f-fli^P,^**^ (X-.,y0|P,V)m 

Theorem 3«2: 

(i) There exists a unique nonnegative linear extension 

E ( . i yjix^nMW-t&n&fWot E( . iy0) . 
(ii) The operator E( . I yo) is continuous in the following sen-

se : Y* —* Y u* a# e* "* E(y.jyo) —* E(y I yo) u. a. e. 

Remark : We shall write E(yl yo) instead of E(yiyo). 

We-shall also use the pointwise convergence. Let {fn}cp(!2.V9 

and f c Efll.V) . V/e say that the sequence {fn} converges to f 

almost everywhere if there exists a set Ac If -such that P(A) = O 

and V oo^il-A : f n M — * f(u>) ( n-*«>). V/e write fn-* £ a- e. 

in this case. 

I-f ( ft} c ̂ (-tt# *i pi W . and p € ̂ (n, y( P, V) then the notation 
Y»~* Y a* e* (n~*°°) mea.ns that fn—* f a. e. (n-*o°) for some 

f n € Yn and f € y> . 

4. The ergodic theorem 

V/e have defined all objects which give us possibility to formu­

late vector lattice variant of the ergodic theorem. 

Theorem 11.1: 

Let (XI, y, P) be a probability measure space, T:il—+£l be a mea­

sure preserving mapping and V be a ^-complete vector lattice. 

For any pc/YQ.y, P, V) : 

(i) . y.'T £ *~(X1,V<W 

(ii) i £ y0rpi-> E(ylif0) 3. e. when k -* oo 
iC I* A « ' 1*0 
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k-4 

ftii) J I E ( y i yt) - i 21 Y °T± I d P ~* ° w h e n k -* °° 
ii f k , s 0 ' , 

where !f0 i s the ff*-subalgebra of a l l almost T-invariant se t s 
A € y . 

Proof: 

(i) The set of all y>€ ̂ °°(n, if, P, V) such that p T ^ #~(!2, y, /> v; 

is a linear subspace of £ (J2, y, P, W which contains X™[£L,y,P,V) and is 

closed with respect to u. a. e. convergence. So, it must coincide 

with a-f-a.y.p.W. 
(ii) Let m be a set of all ytXTin^, P,V) such that 

k-< 

X £ y^T1 —* E(yiy0) a. e. when k-*~ . 
k isQ 

Obviously, 7/1/ is a vector subspace of eC (JT1, if, P. V/ • The inclusion 
X"(£,y}P,V) c 171 follows easily from the ergodic theorem for real 

functions. If we show that 7YI is closed with respect to u. a. e. 
convergence we prove the equality 771 = if {£,¥, P,V) m 

Let { yvj c ̂  ^e a sequence which converges to y>€ ̂(.fl.y. P, y) uni­

formly almost everywhere. Obviously y € ir̂ /l, y, P, V) • For any n we 

have : -i- 2- % ° ^ ""* E' V* ' ̂ o) almost everywhere v/hen k -* <» . 

Theorem 3.2 implies E(y?hiyo) —* E(ylif0) u. a. e. 

Let fn, f, gn, g be representants of the equivalence classes 

<fh , <f , E(yh I y0), E(y iy0) respectively. Since fn-* f, gn—* g 

u. a. e. there are A^, A2 ^ if and {d-̂ }, {en} C V such that : 

P U ^ = P(A2) = O 

Vu> 6il - Alf Vn: lfn(u» - f (to) I < d^ 

VUJ € J2 - A2 , V n : Igj^Cu;) - g(tu) | ± e n 

and o^ \ O, e n N 0 v/hen n —> oo . 
k-1 

Because -*- 2- ^(^"(^O """̂  Sn^) a* e* v/hen k-*©* for any n, 

there are sets ^ € y such that : 

k-f 

VnVu>*Jl-B„: — - Z . fn(
Ti(w)) — * BQ'IUI) v/hen k-*°o and 

P(Bn) = 0 ^ . Put B = A x u A 2 M h^ % . Obviously P(B) = 0 . 

Let A - |v̂  T--(B) . Then P(A) . 0 , A X U A2 u .Ji?^ C A a*1*1 

T~i(A) < A for any i . Take fixed u> € .ft - A . Then for any n : 
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Vi: | f̂ T̂ -lu;)) - f(Ti(u»)l < dn 

16n (*>) - g (u>) I < en 

-T- £ f^C^tto)) —» ^(M) when k -* °° . 

It means that for any n and k the following inequalities hold: 
M 

lg(u>) - l l f tT^u*))! f |g(w) - &niU))\ + 
.K j rO A 1 

M k..f 

+ I gn(u» - i £ f-fT^tt)))! + I [ If-^T^uj)) - f (T^u))) I -* 
k iso k iso 

f en + |gn(u;) - JL E f ^ u , ) ) ! + ĉ  

Denote a^ = eR + c^ , b n ? k = Ig^u;) - -J-I! f^T^u;))! . and 

ck -= A (a- + bn k ) . Then | g(u» - JL J. f (T^cu))! < ck and 

ck-^ 0 by Lemma 2.3 • 
The proof of (ii) is complete. 
(iii) Since X~(ntfP,V) is a sublattice of ̂(•Qli/,/

), V) the integrals 

J I E ( if I Jf0) - ̂  ]E f • T* I dp are defined and we may repeat 
n k iso 

the proof of (ii) (without using the representants fn, f, gn, g) . 
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