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A VECTOR LATTICE VARTANT OF THE ERGODIC THEOREM

Peter Malidky

This paper is in final form and no version of it will be sub-
‘mitted for publication elsewhere. -

1. Introduction

The purpose of this paper is to give a variant of the ergodic
theorem for functions with values in a vector lattice. Let (£,¥, P)
be a probability measure space and T:(1—*(l be a ¥ -measurable .
mapping. T is called measure preserving if P(T"1(A))= P(A) for
any A €Y.

Theorem 1.1:

Let T:—f be a measure preserving mappn.ng of a probab:.l:.ty
measure space (f,¥,P) . For any integrable function f: {1 —> R
there exists an integrable function g:f1—>[R such that :

(1) 3.1.12 Z T (w)) = g(w) almost everywhere
- i=o
=0 k-4

(19 un §lewr- 4 L e(etcw)lazwr =0 .

The parts (i) and (ii) belong to G.D.Birkhoff and J. von Neumann
respectively., See [5] pp. 30-38. : :

It is convenient to describe the limit function g wusing the
conditional mean value. Let ([, ¥, P) be a probability measure spa-
ce and ¥ be a 6 -subalgebra of ¥ . For any ‘integrable Y -measu-
rable function f£:(l =R there exists an integrable VY, ~measurable
function g:Q— R such that :

Aff(w)dP(w) = § g(w) dP(w) for any A € ¥,

The function £ determines the function g uniquely almost every-.
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where . All these facts may be found in [1] pp. 193-194, The func-
tion g is called a conditional mean value of f with respect
to ¥, . We shall write g = E(fI1¥).

In Theorem 1.1l it may be put g = E(f1Y,) , where ¥, is the
6 -algebra of all almost T-invariant sets. (A set A€ Y is called
almost T-invariant if the symmetric difference AaA i) is
a zero set.) ’ . :

This paper uses the results of [3] concerning the mean value
and the conditional mean value for vector lattice valued functions,
see also [4] "« A special case of the presented ergodic theorem has
been proved by E. Hrachovina, see [2] .

2. Vector lattices

A real vector space V is called a vector lattice if it has &
partial ordering < such that (V,<) is a lattice and :
VX, ¥, 2€V: XS y=>X+2 £ y+2
Vx, ye€V:V220: x<y= 2x £2y .

Lattice operations are denoted by symbols v and A .

If a € V then the symbol. |al denotes the element awv (-a) .

A vector lattice V is called 6 -complete if every upper bounded
sequence {ar'l}”c V has a least upper bound which is denoted by
the symbol ,){‘an (or equivalently, everj lower bounq.gd sequence
(an} has a greatest lower bound which is denoted by “/}‘ en) .

Definition 2.1: ‘

Let V be a 6-complete vector lattice. A sequence {a,} < V
is called decreasing to O ;'oi‘ :
Vn: 0 <ay,q <a, and ”/__\4an=0.
We write a, V¥ O (n —e0) in this case.
A sequence {x;} ¢ V is called converging to x € V if there
exists a sequence {a,} € V decreasing to O such that
Ixp - x| £ a, for all n . We write x,-» x (n->e) in this case.

Proposition 2.2: o
Let V be a 6 -~-complete vector lattice.
(1) A sequence {x,} < V conver.'cgesnto x € \L is and only if
{xn} is bounded and x = A N x = VY, A Iy
(ii) a, ¥ 0, by Y 0 = (a, + by) » O
(ii1) a, N O, 2 2 O = Aa, N O
(iv) Xy =X, Jp= ¥ = (X + yp) = (x + ¥) .
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(V) xp—x = Axp — 2Ax .
The following lemma will be 1mportant in the proof of the main
result of this paper.

Lemma 2:3: '
Let V be a 6 -complete vector lattice and {a,} < vV, {bp, Jev
be sequences such that :
)4 n, k: bn k Z0
Va: by =0 (k=
an ¥ O (n — o0)
Put =n/'\' (ap + bn,k) . Then Vk: ¢ 2 0  and ck—rI‘O (k—’w).

Proof:

The inequality ¢ 2 O for all k is obvious. The sequence
{ck} is bounded because 0% cx £ a) + by x for a°];1 k and
by x> O (k —>o0). It means that the element NN cj exists.
Since Cy 2 0 i‘or all k , by Proposition 2. 2 it suffices- to

prove that /\ V =0 ., We have :
k21 Jsk J
o0 -

[ L4 [
. = )< .
M= N (an + by, 5) = /N M (an+ by ) end

Lod o0 4 4 L . ©o oo oo
N oyes 5N A (8n + bp,5) = A A (an + by, 3) =
00 oo oo ‘ eo.
= '{.\‘(an+ l{-\4j=kbn"j)= n/’\‘(an+0)= "/_\‘an=0 .

Except for assumptions of lemma we used the obvious facts :

() 0o L oo
V A (an + bn,3) 2 AV (an + bn,3) and

3. Integral and conditional mean value of vector lattice -
valued functions "

In this section we give a summary of results of author’'s
paper [3] .

Let (0, ¥,P) be a probability measure space end V be a 6~
complete vector lattice. The symbol F(Q,V) denotes the set of
all functions f:Q —> V . Obviously, F(Q,V) is a & -complete
vector lattice under natural operations and ordering.
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Two functions f, g € F(Q,V) are called equivalent if there exists
aset A€Y such that P(A) =,0 and VweQ -A: £f(w) = g(w) .
The set of all equivalence classes is denoted by F (2, ¥, P, V)

and it is a 6 -complete vector lattice under natural operations
and ordering. A function f € F(.ﬂ.V) is called simple if

f(w) =a; for w € A; , where: } is a finite measurable par-
tition oi‘.ﬂ and a; 6 V . We put

.

n
j{ f(w) dP(w) = l; P(Ai)'ai in this case.
A class y€?(ﬂ ¥,PV)is called s:.mple if it contains some s:mele
function f .

We put E(y) = é‘f dp = .&f f (w) dP(w) in this case.

The set of all simple functions is denoted by I,(Q,%,P,V) and the
set of all simple classes is denoted by X, (Q,Y,P, V)

Let {f,} < F(Qa,V) and f € F(Q,V) . We say that a sequence
{£,} converges to the function f uniformly almost everywhere if
there exist A€y , {a.n} € V such that :

P(A) =0

Vwe-a Yn: l£(w) -f(wl £ a

a,~0 (n—e) . .

Obviously, the condition eh—) O may be replaced by a stronger
one ap™ O . We write f,~>f u. a. e. (n— ) in this case.
Let LynY cFQYPV) and ype F(Q,¥,P V) . Ve say that the se-
quence {y,} converges to the class Y uniformly almost everywhere
if f,—>f wu. a. e. for some f, € ¥, and f €y . We write
$n=" ¥ u. a. e. (n—>o) in this case.

Let M be a system of all vector subspaces of . #(Q,¥ P V) which
contain 36‘:(.0.‘.?, P,V) and are closed with respect to the convergen-
ce wvhich was described above. Obviously, ™ has the minimal ele-

ment with respect to inclusion. This vector spacé is denoted by
-]
(Q,¥% P V)

Theorem 3.1: A o

(1) 2£7(Q,¥,P, V) is a vector sublattice of #(Q,¥ P V),
which is closed with respect to u. a. e. convergence.

(ii) There exists a unique nonnegative linear extension E of
E onto ¥”(£,¥P V), which is continuous in the following
sense ¥, P u. a. e. = E(p)—>E(p) . :
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Remark : Ve shall write E(p) or f pap for pex™(n,%PRV)
instead of E (y) . . :

In a similar way it may be constructed a conditional mean value
operator. Let (f1,¥, P) be a probability measure space, ¥, be a
6 -subalgebra of ¥ and E(.lY,) be a conditional mean value ope-
rator for real functions. Take y cxy(q,y, PV); ¢ is an equivalen-
ce class of some simple function f of the form Z ,ZA i e
Denote by Y the equivalence class of the functlon

n o
ig E(%Ail.‘f,)-ai "« In this case y €¢X (Q,%,PV). Putting E(pl%)=y
~we obtain a linear nonnegative operator E(.lSI,,):!:(n,.'f,l’,V)"-".‘t’“(ﬂ,V,,F’,V).

Theorem 3%.2:

(i) There exists a unique nonnegative linear extension
E(.19):X70,9PV)>X(0 4% PV)Iof E(. 1Y) .

(ii) The operator E(. |Y,)is continuous in the following sen-
se 1, = ¢ u. a. e. = E‘%ly’,)_'—’ I-El(yl.‘fo) U. a. e. :

Remark : We shall write E(ylY,)instead of E(tfly’,).

We- shall also use the pointwise convergence. Let {fn} cF(Q,V)
and f¢ F(Q,V) . Ve say that the sequence {f } converges to f
almost everywhere if there exists a set A €Y -such that P(A) = O
and Vweéll=A : f(w)— f(w) ( n—w). Ve write f,—f a. e.
in this case.’

If {g}<F(Q,¥PV) and peF(n,¥%PV) then the notation
¢o—>y a. e. (n-—») meens that f —»f a. e. (n-—»o0) for some
£, € p, and £ €y .

4, The ergodic theorem

Ve have deflned all objects which give us p03510111ty to formu-
late vector lattice variant of the ergodlc theorem.

Theorem 4.1: . . .
Let (2, ¥,P) be a probability measure space, T:0Q—>0 be a mea-
sure preserving napping and V be a 6 -complete vector lattice.
For any pe¥™(Q,¥, PV) : ‘
(i) . pem e X™(Q,%PV)
k-1

L Z 'f°Ti'—> E(pl¥,) a. e. vhen k- o0
20

(ii) "
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k-4 .
i S 1E(p1Y) - L Y per| dP —» 0 when k—> o0
2 k izo ;

where Y, is the 6 -subalgebra of all almost T-invariant sets
A ey .

Proof: .

(i) The set of all yex “(Q, 9, P, V) such that peoTe X%, ¥ pv)
is a linear subspace of X (,%,PV) wvhich contains ¥;(Q,Y% P, V) and is
closed with respect to u. a. 8. convergence. So, it must c01nc1de
with X7(q,¥,PV).

(ii) Let M be a set of all pe X“(ﬂ,.‘f’, P,V) such that

k-1
1 Z YTl—?E(YIS’) a. e. wvhen k—roo,

K iz0

Obviously, M is a vector subspace of éﬂ”(.ﬂ,S’,P,V). The inclusion

X'(Q,¥,PV)c Mm  follows easily from the ergodic theorem for real

functions. If we show that M is closed with respect to u. a. e.

convergence we prove the equality M =¢7(Q,%,PV),

Let {y,} €M be a sequence which converges to ¢ F(0,%,PV) uni-

formly almost everywhere. 0bv1ous1y pex a Y,P,V). Tor any 'n we
k-1 ,

have : Z Yo © LR E(y, 1¥,) almost everyvhere when k = oo

Theorem 3.2 implies E(g,1¥,) — E(¢l¥,) u. a. e.
Let f,, f, g, 8 be representants of the equlvalence classes
Pns ¥ s Ely, 1 %), E(plY,) respectively. Since .~ £, g8
U. a. e. there are Ay, A5 € ¥ and {d,}, {e,} € V such that :
P(A)) =P(a) =0

Ywen-4), Vn: [f (w) - f(w] = q

Vw e -2y Yn:lgy(w) - g(wl < e
and dn\ 0, e,N O vhen n —» o0

k-1

Because -I];- ':Zo fn(’.t'i(w)) — gn(w) a. e. vhen k-o for any n,

n

there are sets B, € ¥ such that :
k-

-

VoVwell -B,: -1%- fn(Ti(w)) — g, (w) vhen k-—»o00 and

iz0
P(B,) = 0. Put B - AV AU Bn » Obviously P(B) =0 .

Let & =\ T"H(B) . Then P(A) =0, AjU A,V B, C A and
T1(A) € A for any i . Toke fixed we€ (L = A . Then for any n :
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Vi: | £,(w) - £(Thw)l £ ay
lgy (W) - g(w)l = e,

k-1
mil
% ; fn(T (w) — gn(w) when k —»o00

It means that for any n and k +the following inequalities hold:

k-4
-1 1 < -
lgw - 22 stw)] £ lgw - gl +

k-4 . k-4 . . '
+lgg(w - L Z., fp (Tl + L Y e (rhw) - s(thw) | =

) k-1 .
fen+|gn(W) "f;i;,fn(Tl‘“”)l + dy .
k-1
Denote % = en + dTl ) bn,k = Ign(W) - '%' Z fn(Tl(w))l . and
=0
k=1

o0 . , s
Cx .=v(=\1 (2 + bn,k) . Then |g(w) - -i'-; 'Z f(Tl(w)’” < ¢ and
cx—> 0 Dby Lemma 2.3 .
The proof of (ii) is complete.
(iii) Since ‘-"'(.Q.Q’,P,V) is a sublattice of #(2,%,AV) the integrals

» ket _
£| E(p 1Y) - % g p o T | 4P ‘are defined and we may repeat

the proof of (ii) (without using the representents £, £, g, &) .
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