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1 Description of the Domain

We suppose that Ω ⊂ Rn, where n = 2 or n = 3, Ω is a bounded domain,
∂ Ω ∈ |C0,1. Further, we suppose that Ω = Γ1 ∪ Γ2, where Γ1 and Γ2 are
closed (not necessarily connected) sets such that measn−1(Γ1 ∩ Γ2) = 0 and
measn−1(Γ1) > 0.

The domain Ω corresponds to a channel filled up by a fluid. Γ1 is a fixed wall
of the channel and Γ2 involves the input and the output of the channel.

2 Classical Formulation of the Problem

Let T > 0 be a positive number. (0, T ) denotes the time interval, Q = Ω×(0, T ),
eij(u) (for 1 ≤ i, j ≤ n) denotes ∂ui/∂xj + ∂uj/∂xi.

The problem we will deal with can be classically formulated as follows:

∂u

∂t
− ∂

∂xj
(ν · eij(u)) + uj ·

∂ui

∂xj
+

∂P
∂xi

= gi in Q, i = 1, . . . , n, (1.kuc)

divu = 0 in Q, (2.kuc)
u = 0 in Γ1 × (0, T ), (3.kuc)

−P · ni + ν · eij(u) · nj = σi in Γ2 × (0, T ), (4.kuc)

This is the final form of the paper.
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u(x, 0) = u(x, T ) in Ω, (5.kuc)
u(., 0) = 0 on Γ1. (6.kuc)

Here u is the velocity, P is the pressure, ν denotes the viscosity, g is a body
force, σ is a prescribed vector function on Γ2 and n = (n1, . . . ,nn) is the outer
normal vector. The problem (1.kuc)–(6.kuc) will be called the time-periodic Navier-
Stokes problem with the mixed boundary conditions. We suppose that ν is a
positive constant in the whole paper.

The used Dirichlet boundary condition expresses a non-slip behaviour of the
fluid on the fixed walls of the channel. The condition (4.kuc) means that we prescribe
a normal component of the stress tensor on Γ2. The Navier-Stokes equations with
condition (4.kuc) were already treated in the works [1]–[6].

3 Some Function Spaces and Their Properties

To formulate the problem (1.kuc)–(6.kuc) weakly, we shall need some function spaces.
Let us denote

E(Ω) = {ϕ ∈ [C∞(Ω)]n; div ϕ ≡ 0, supp ϕ ∩ Γ1 ≡ ∅}.

The Banach spaces V k,p, resp. V 0,q, is defined as the closure of E(Ω) in the norm
of the space [W k,p(Ω)]n, resp. [Lp(Ω)]n, where k > 0 (it need not be an integer)
and 1 ≤ q ≤ ∞. For simplicity, we denote the space V 0,2 by the symbol H .

Both the spaces V 1,2 and H are Hilbert spaces with the scalar products

((ψ, φ))1,2 =
∫

Ω

eij(ψ) · eij(φ) d(Ω)

resp.

((ψ, φ))0,2 =
∫

Ω

ψi · φi d(Ω).

The symbol 〈., .〉 denotes the duality between elements from (V 1,2)∗ and V 1,2.
It is obvious that V 1,2, H and (V 1,2)∗ are three Hilbert spaces, which satisfy

the following conditions

V 1,2 ↪→↪→ H ↪→↪→ (V 1,2)∗

and H coincides with the interpolation [V 1,2, (V 1,2)∗]1/2. Moreover, if
u ∈ L2(0, T, V 1,2), u′ ∈ L2(0, T, (V 1,2)∗), then u ∈ C([0, T ]; H) and

||u||L∞(0,T ;H) ≤ c · (||u||L2(0,T ;V 1,2) + ||u′||L2(0,T ;(V 1,2)∗)),

where c = c(Ω).
If X is a Banach space then (X )∗ will denote its dual and Lp(0, T ;X ), 1 <

p < ∞, will be the linear space of all measurable functions from the interval
(0, T ) into X such that ∫ T

0

||u(t)||pX dt <∞.



A Time Periodic Solution of Navier-Stokes Equations 195

Let X and Y be the following Banach spaces:

X = {u; u′ ∈ L2(0, T, V 1,2), u′′ ∈ L2(0, T, (V 1,2)∗), u(0) = u(T ) ∈ V 1,2,

u′(0) = u′(T ) ∈ H},
||u||X = ||u||L2(0,T ;V 1,2) + ||u′||L2(0,T ;V 1,2) + ||u′′||L2(0,T ;(V 1,2)∗),

Y = {f ; f ∈ C([0, T ], (V 1,2)∗), f ′ ∈ L2(0, T, (V 1,2)∗), f(0) = f(T ) ∈ (V 1,2)∗},
||f ||Y = ||f ||L2(0,T ;(V 1,2)∗) + ||f ′||L2(0,T ;(V 1,2)∗).

4 Weak Formulation of the Problem

The weak formulation of the problem (1.kuc)–(6.kuc) will be based on an operator equa-
tion. Therefore we define operators S, B and N at first.

The operator S from X to Y is defined by the equation

〈S(u), v〉 = ((u′, v))0,2 + ν · ((u, v))1,2

for every v ∈ V 1,2 and almost every t ∈ (0, T ).

b(ϕ, ψ, φ) will denote trilinear form on V 1,2 × V 1,2 × V 1,2 such that

b(ϕ, ψ, φ) =
∫

Ω

ϕj ·
∂ψi

∂xj
· φi d(Ω).

It can be easily verified that b(ϕ, ψ, φ) satisfies the following estimate

|b(ϕ, ψ, φ)| ≤ c · ||ϕ||V 1,2 · ||φ||V 1,2 · ||ψ||V 1,2 , (7.kuc)

where c = c(Ω).
Integrating by parts and using the theorems about imbedding the space

[W kp(Ω)]n into the space Lq(∂Ω) the following estimates are verified:

|b(ϕ, ψ, φ)| ≤ c · ||ϕ||V 1,2 · ||ψ||
V

7
8 ,2 · ||v||V 1,2 , (8.kuc)

|b(ϕ, ψ, φ)| ≤ c · ||ϕ||
V

7
8 ,2 · ||ψ||V 1,2 · ||v||V 1,2 . (9.kuc)

The symbols ϕ and ψ will sometimes also denote functions of the variable t
with values in V 1,2.

B will be operator from X into Y defined by the equation

〈B(u), v〉 = b(u, u, v)

for every v ∈ V 1,2 and almost every t ∈ (0, T ).
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Finally, operator N from X into Y is defined by the equation

N (u) = S(u) + B(u).

A function u ∈ X will be called a weak solution to the time-periodic Navier-
Stokes problem with the right hand side f if

N (u) = f.

Notice that

〈f, v〉 =
∫

Ω

gi · vi d(Ω) +
∫

Γ2

σi · vi d(∂Ω).

5 The Local Diffeomorphism Theorem

Suppose that u0 and f0 are such elements of X and Y that

N (u0) = f0.

(This means that u0 is a weak solution to the time-periodic Navier-Stokes prob-
lem with the right hand side f0.) Our further aim is to investigate the solvability
of the equation N (u) = f with f from some neighbourhood of point f0 in Y . To
solve this problem, we will use the following very important theorem (the Local
Diffeomorphism Theorem).

Theorem 1. Let X , Y be Banach spaces, F be a mapping from X into Y be-
longing to C1 in some neighbourhood V of point u0. If F ′(u0) is one-to-one
from X onto Y and continuous, then there exists a neighbourhood U of point u0,
U ⊂ V and a neighbourhood W of point f(u0), W ⊂ Y, so that F is one-to-one
from U to W .

6 The Fréchet Derivative of Operator N

It is obvious that if there exists a point u ∈ X in which the operator N sat-
isfies the assumption of the Local Diffeomorphism Theorem then the equation
N (u) = f is “locally solvable” (i.e. solvable in some neighbourhood of u). It is
clean that N ∈ C1(X). Further, need to express the Fréchet derivative of oper-
ator N at point u and to find out, whether it is one-to-one. We will express the
Fréchet derivative of N by means of operators K and G.

K is the bilinear operator from X ×X into Y defined by the equation

〈K(u), v〉 = b(u, w, v) + b(w, u, v)

for every v ∈ V 1,2 and for almost every t ∈ (0, T ).
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The operator G from X ×X into Y is given by the equation

G(u, w) = S(w) +K(u, w).

It is possible to prove there exists a constant c = c(Ω) so that

||b(u, w, .)||Y ≤ c · ||u||X · ||w||X .

Theorem 2. Let u ∈ X. Then the operator G(u, .) is the Fréchet derivative of
N at point u and G ∈ C1(X ×X, Y ).

Proof. It is possible to prove for arbitrary u, w ∈ X following estimate

||b(u, w, .)||Y ≤ c · ||u||X · ||w||X ,

where c = c(Ω). Therefore and from the estimate

||N (u + w) −N (u)− G(u, w)||Y = ||b(w, w, .)||Y ≤ c · ||w||2X ,

we get

lim
||w||X→0

||N (u + w)−N (u)− G(u, w)||Y
||w||X

= 0.

So G(u, .) is the Fréchet derivative of N at point u. The smoothness of G follows
immediately from its definition. The proof is complete.

7 Local Properties of Operator N

We have proved that the operator G(u, .) has the form

G(u, .) = S(.) +K(u, .)

in the previous section. Further we will prove that operator S is a one-to-one
linear operator from X onto X and K(u, .) is a compact linear operator from X
into Y . So the operator G(u, .) is the sum of a one-to-one operator and a compact
operator. Operators of this form have properties which will be used later.

Lemma 3. S is a linear continuous one-to-one operator from X onto Y .

Proof. The linearity and continuity of S are obvious. Next we prove that S is
an operator from X onto Y . The form ((., .))1,2 is V 1,2-elliptic. Then there exists
w ∈ L2(0, T, V 1,2) ∩ C([0, T ]; H), so that w′ ∈ L2(0, T, (V 1,2)∗), the equation

d

dt
((w(t), v))0,2 + ν · ((w(t), v))1,2 = 〈f ′, v〉

holds for every v ∈ V 1,2 and
w(0) = w(T ).
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Then there exists ω0 ∈ V 1,2 so that for every v ∈ V 1,2 holds

ν · ((ω0, v))1,2 = 〈f, v〉 − ((w(0), v))0,2 .

Let

u(t) = ω0 +
∫ t

0

w(s) ds, t ∈ (0, T ).

Then u ∈ X and S(u) = f . Thus we have proved that S is from X onto Y . Let
us suppose that S(u) = 0. Then u = 0. The proof is complete.

Lemma 4. Let u ∈ X. Then K(u, .) is a linear compact operator from X into Y .

Prior to the proof we recall a result from [7, Lemma 4.5]. Denote

Z = {u; u ∈ L2(0, T, V 1,2), u′ ∈ L2(0, T, (V 1,2)∗)}

with the norm
||u||Z = ||u||L2(0,T ;V 1,2) + ||u′||L2(0,T ;(V 1,2)∗)

(u′ is the Schwartz derivative in the sence of imbedding V 1,2 ↪→ H ↪→ (V 1,2)∗).
Then

Z ↪→↪→ L2(0, T ; V
7
8 ,2) (10.kuc)

Proof. Let wk ⊂ X be a bounded set in X . Using (10.kuc) we get w ∈ X such that

w′k → w′ in L2(0, T ; V
7
8 ,2) (11.kuc)

and
wk(0)→ w(0) in V

7
8 ,2

Combining it with (11.kuc) we get

wk → w in L∞(0, T ; V
7
8 ,2). (12.kuc)

Note that

||K(u, wk)−K(u, w)||Y =

=||b(u, wk − w, .)||L2(0,T ;(V 1,2)∗) + ||b(wk − w, u, .)||L2(0,T ;(V 1,2)∗) +
+||b(u, w′k − w′, .)||L2(0,T ;(V 1,2)∗) + ||b(u′, wk − w, .)||L2(0,T ;(V 1,2)∗) +
+||b(w′k − w′, u, .)||L2(0,T ;(V 1,2)∗) + ||b(wk − w, u′, .)||L2(0,T ;(V 1,2)∗)

(13.kuc)

We estimate the third and fourth additive terms. Let v ∈ V 1,2. Use (8.kuc) to get
the estimate

|b(u(t), w′k(t)− w′(t), v)| ≤ c · ||u(t)||V 1,2 · ||w′k(t)− w′(t)||
V

7
8 ,2 · ||v||V 1,2 .
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Therefore

||b(u(t), w′k(t)− w′(t), .)||(V 1,2)∗ ≤ c · ||u(t)||V 1,2 · ||wk(t)− w(t)||
V

7
8 ,2

for almost all t ∈ (0, T ), c = c(Ω). It follows that

||b(u, w′k − w′, .)||L2(0,T ;(V 1,2)∗) ≤ c · ||u||L∞(0,T ;V 1,2) · ||w′k − w′||
L2(0,T ;V

7
8 ,2)

. (14.kuc)

Similarly, we get

|b(u′(t), wk(t)− w(t), v)| ≤ c · ||u′(t)||V 1,2 · ||wk(t)− w(t)||
V

7
8 ,2 · ||v||V 1,2

and therefore

||b(u′(t), wk(t)− w(t), .)||(V 1,2)∗ ≤ c · ||u′(t)||V 1,2 · ||wk(t)− w(t)||
V

7
8 ,2

for almost all t ∈ (0, T ), c = c(Ω). It follows

||b(u′, wk − w, .)||L2(0,T ;(V 1,2)∗) ≤ c · ||u′||L2(0,T ;V 1,2) · ||wk − w||
L∞(0,T ;V

7
8 ,2)

. (15.kuc)

The same way we prove

||b(u, wk − w, .)||L2(0,T ;(V 1,2)∗) ≤ c · ||u||L2(0,T ;(V 1,2)∗) · ||wk − w||
L∞(0,T ;V

7
8 ,2)

,

(16.kuc)

||b(wk − w, u, .)||L2(0,T ;(V 1,2)∗) ≤ c · ||u||L2(0,T ;(V 1,2)∗) · ||wk − w||
L∞(0,T ;V

7
8 ,2)

,

(17.kuc)

||b(w′k − w′, u, .)||L2(0,T ;(V 1,2)∗) ≤ c · ||u||L∞(0,T ;V 1,2) · ||w′k − w′||
L2(0,T ;V

7
8 ,2)

(18.kuc)

and

||b(wk − w, u′, .)||L2(0,T ;(V 1,2)∗) ≤ c · ||u′||L2(0,T ;(V 1,2)∗) · ||wk − w||
L∞(0,T ;V

7
8 ,2)

.

(19.kuc)

From (11.kuc)–(19.kuc) we get

||K(u, wk)−K(u, w)||Y → 0.

The proof is complete.

The operator G(u, .) is the sum of a one-to-one operator and a compact op-
erator. The operators of this form are widely treated in mathematical literature
and we can apply their known properties to prove the following theorem.

Theorem 5. Let u ∈ V 1,2. Then the following statements are equivalent:
(a) G(u, .) is an injective operator .
(b) G(u, .) is an operator onto (V 1,2)∗.
Moreover, if the statements (a)–(b) are satisfied at point u then there exists

an open neighbourhood U of point u in X and an open neighbourhood W of point
N (u) in Y such that N is a one-to-one operator from U onto W .
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[4] S. Kračmar, J. Neustupa, Some Initial Boundary Value Problems of the Navier-
Stokes Type with Mixed Boundary Conditions. Proc. of the seminar Numerical
Mathematics in Theory and Practice, Pilsen, (1993), 114–120.
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